All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 207099 by tri26112004 last updated on 06/May/24
Answered by Berbere last updated on 06/May/24
=∫−∞∞eiπax(x2+β2)n+1dx;a∈R+ifImx⩾0∣eiπax∣=∣eiaπ(Rcos(β)+iRsin(β))∣=e−aπRsin(β)⩽1∀β∈[0,π]applieResidueTheoremover[−R,R]∪Reiθ;θ∈[0,π]andTacklimR→∞∫−∞∞eiπax(x2+β)n+1dx=∫−∞∞eiaπx(x+iβ)n+1(x−iβ)n+1dx=f(a)=limx→β.2iπ.1n!∂n(x−iβ)n+1e2iπax(x−iβ)n+1(x+iβ)n+1∣x=iβ=2iπn∂ne2iaπx(x+iβ)n+1∣x=iβ;Libneizformula∂n.eiaπx.1(x+iβ)n+1=∑nk=0(nk)(eiaπx)(n−k).(1(x+iβ)n+1)(k)∣x=iβ=∑nk=0(nk)(iaπ)(n−k)eiaπx.(−1)k(n+k)!n!(x+iβ)n+1+k∣x=iβ=e−aπβn!∑nk=0(nk)(iaπ)(n−k).(n+k)!(2iβ)n+1−kf(a)=2iπn!.e−aπβn!∑nk=0(iaπ)(n−k)(n+k)!(2iβ)n+1−k=(πβ)n+1(a2)ne−aπβ(n!)2∑nk=0(nk).(n+k)!(2aβπ)k
Terms of Service
Privacy Policy
Contact: info@tinkutara.com