Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 207099 by tri26112004 last updated on 06/May/24

Answered by Berbere last updated on 06/May/24

=∫_(−∞) ^∞ (e^(iπax) /((x^2 +β^2 )^(n+1) ))dx;a∈R_+   if Imx≥0 ∣e^(iπax) ∣=∣e^(iaπ(Rcos(β)+iRsin(β))) ∣=e^(−aπRsin(β)) ≤1  ∀β∈[0,π]  applie Residue Theorem over [−R,R]∪Re^(iθ) ;θ∈[0,π] and Tacklim_(R→∞)   ∫_(−∞) ^∞ (e^(iπax) /((x^2 +β)^(n+1) ))dx=∫_(−∞) ^∞ (e^(iaπx) /((x+iβ)^(n+1) (x−iβ)^(n+1) ))dx=f(a)  =lim_(x→β) .2iπ.(1/(n!))∂_n (x−iβ)^(n+1) (e^(2iπax) /((x−iβ)^(n+1) (x+iβ)^(n+1) ))∣_(x=iβ)   =((2iπ)/n)∂^n (e^(2iaπx) /((x+iβ)^(n+1) ))∣_(x=iβ) ;Libneiz formula  ∂^n .e^(iaπx) .(1/((x+iβ)^(n+1) ))=Σ_(k=0) ^n  ((n),(k) )(e^(iaπx) )^((n−k)) .((1/((x+iβ)^(n+1) )))^((k)) ∣_(x=iβ)   =Σ_(k=0) ^n  ((n),(k) )(iaπ)^((n−k)) e^(iaπx) .(((−1)^k (n+k)!)/(n!(x+iβ)^(n+1+k) ))∣_(x=iβ)   =(e^(−aπβ) /(n!))Σ_(k=0) ^n  ((n),(k) )(iaπ)^((n−k)) .(((n+k)!)/((2iβ)^(n+1−k) ))  f(a)=((2iπ)/(n!)).(e^(−aπβ) /(n!))Σ_(k=0) ^n (iaπ)^((n−k)) (((n+k)!)/((2iβ)^(n+1−k) ))  =((π/β))^(n+1) ((a/2))^n (e^(−aπβ) /((n!)^2 ))Σ_(k=0) ^n  ((n),(k) ).(((n+k)!)/((2aβπ)^k ))

=eiπax(x2+β2)n+1dx;aR+ifImx0eiπax∣=∣eiaπ(Rcos(β)+iRsin(β))∣=eaπRsin(β)1β[0,π]applieResidueTheoremover[R,R]Reiθ;θ[0,π]andTacklimReiπax(x2+β)n+1dx=eiaπx(x+iβ)n+1(xiβ)n+1dx=f(a)=limxβ.2iπ.1n!n(xiβ)n+1e2iπax(xiβ)n+1(x+iβ)n+1x=iβ=2iπnne2iaπx(x+iβ)n+1x=iβ;Libneizformulan.eiaπx.1(x+iβ)n+1=nk=0(nk)(eiaπx)(nk).(1(x+iβ)n+1)(k)x=iβ=nk=0(nk)(iaπ)(nk)eiaπx.(1)k(n+k)!n!(x+iβ)n+1+kx=iβ=eaπβn!nk=0(nk)(iaπ)(nk).(n+k)!(2iβ)n+1kf(a)=2iπn!.eaπβn!nk=0(iaπ)(nk)(n+k)!(2iβ)n+1k=(πβ)n+1(a2)neaπβ(n!)2nk=0(nk).(n+k)!(2aβπ)k

Terms of Service

Privacy Policy

Contact: info@tinkutara.com