Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 209220 by alcohol last updated on 04/Jul/24

Answered by Berbere last updated on 04/Jul/24

SAB ,SAC  &ABC c est claire (AS)⊥(ABC) &ABC rectangle  ⇒SA^2 +AB^2 =SB^2 ;SA^2 +AC^2 =SC^2 ;CA^2 +CB^2 =AB^2   (1) &(2)⇒SC^2 −SB^2 =AC^2 −AB^2   ⇒SB^1 −SC^2 =CB^2 ⇒SB^2 =CB^2 +SC^2 ⇒SBC  est rectangle en C  (2)  AF ⊥(SB)   AF^→ .CB^→ =(AC^→ +C^→ F).CB^→ =AC^→ .CB^→ +CF^→ .CB^→ =0+0=0  first ACB rectangle (2);SCB rectangle CF^→ =aSC^→   (AF)⊥(CB)  (2)bAF∈(SAC) and (AF)⊥(SBC)⇒(ASC)⊥(SBC)  (AC)∈(SAC) & (AC)⊥(BC);(AC)⊥(SC)  ⇒(AC)∈(ASC) &(AC)⊥(SBC)⇒(ASC)⊥(SBC)  (3)  (AF)∈(SAC)⊥(SBC)  ⇒(AF)⊥(BC)  AF^→ =AS^→ +aSC^→ ;AF^→ .AC^→ =0 car les face du Tetraede Sont  orthogonal  (AF)⊥(AC)⇒(AF)⊥(ABC)⇒(CFA)⊥(ABC)  (AF)⊥(SBC)  ;(AF)∈(ADF)⇒(ADF)⊥(SBC)  DF∈(ADF);(SB)∈(SBC)⇒(DF)⊥(SB)  (5) meme methode

SAB,SAC&ABCcestclaire(AS)(ABC)&ABCrectangleSA2+AB2=SB2;SA2+AC2=SC2;CA2+CB2=AB2(1)&(2)SC2SB2=AC2AB2SB1SC2=CB2SB2=CB2+SC2SBCestrectangleenC(2)AF(SB)AF.CB=(AC+CF).CB=AC.CB+CF.CB=0+0=0firstACBrectangle(2);SCBrectangleCF=aSC(AF)(CB)(2)bAF(SAC)and(AF)(SBC)(ASC)(SBC)(AC)(SAC)&(AC)(BC);(AC)(SC)(AC)(ASC)&(AC)(SBC)(ASC)(SBC)(3)(AF)(SAC)(SBC)(AF)(BC)AF=AS+aSC;AF.AC=0carlesfaceduTetraedeSontorthogonal(AF)(AC)(AF)(ABC)(CFA)(ABC)(AF)(SBC);(AF)(ADF)(ADF)(SBC)DF(ADF);(SB)(SBC)(DF)(SB)(5)mememethode

Commented by alcohol last updated on 05/Jul/24

le schema pardon

leschemapardon

Terms of Service

Privacy Policy

Contact: info@tinkutara.com