Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 209359 by peter frank last updated on 08/Jul/24

Commented by mr W last updated on 08/Jul/24

“with a vertical velocity v” should be  “with a velocity v”.  answer ((v^2 −g^2 x^2 )/(2gv^2 )) should be  ((v^4 −g^2 x^2 )/(2gv^2 )).

withaverticalvelocityvshouldbewithavelocityv.answerv2g2x22gv2shouldbev4g2x22gv2.

Commented by peter frank last updated on 08/Jul/24

true its typing arror.

trueitstypingarror.

Answered by Spillover last updated on 08/Jul/24

y=xtan θ−((gx^2 )/(2u^2 ))sec^2 θ  u=v  let tan θ=X  y=xX−((gx^2 )/(2v^2 ))(1+X^2 )......(i)  (dy/dX)=x−((gx^2 )/(2v^2 ))(2X)  (dy/dX)=x−((gx^2 )/(2v^2 ))(2X)=x−((gx^2 )/u^2 )X  (dy/dX)=0             0=x−((gx^2 )/v^2 )X           X=(v^2 /(gx))      .....(ii)  y=xX−((gx^2 )/(2v^2 ))(1+X^2 )  y_(max) =x(v^2 /(gx)) −((gx^2 )/(2v^2 ))(1+(v^2 /(gx)) )=((v^4 −g^2 x^2 )/(2gv^2 ))  y_(max) =((v^4 −g^2 x^2 )/(2gv^2 ))

y=xtanθgx22u2sec2θu=vlettanθ=Xy=xXgx22v2(1+X2)......(i)dydX=xgx22v2(2X)dydX=xgx22v2(2X)=xgx2u2XdydX=00=xgx2v2XX=v2gx.....(ii)y=xXgx22v2(1+X2)ymax=xv2gxgx22v2(1+v2gx)=v4g2x22gv2ymax=v4g2x22gv2

Commented by Spillover last updated on 08/Jul/24

method 1

method1

Commented by peter frank last updated on 08/Jul/24

thanks

thanks

Answered by Spillover last updated on 08/Jul/24

from equation of trajactory  y=xtan θ−((gx^2 )/(2v^2 ))sec^2 θ    ....(i)  (dy/dθ)=xsec^2 θ−((gx^2 )/(2v^2 ))2sec^2 θtan θ  0=xsec^2 θ−((gx^2 )/(2v^2 ))2sec^2 θtan θ  tan θ=(v^2 /(gx^2 ))    .....(ii)  from (i)  y=xtan θ−((gx^2 )/(2v^2 ))sec^2 θ      y_(max) =x(v^2 /(gx^2 ))  −((gx^2 )/(2v^2 ))(1+(v^2 /(gx^2 )) )  y_(max) =x.(v^2 /(gx^2 ))−((gx^2 )/(2v^2 ))(1+(v^2 /(gx^2 )))  y_(max) =x.(v^2 /(gx^2 ))−((gx^2 )/(2v^2 ))(1+(v^2 /(gx^2 )))  y_(max) =x.(v^2 /(gx^2 ))−((gx^2 )/(2v^2 ))−((gx^2 v^2 )/(2v^2 gx^2 ))  y_(max) =((2v^4 −g^2 x^2 −v^4 )/(2v^2 g))  y_(max) =((v^4 −g^2 x^2 )/(2v^2 g))

fromequationoftrajactoryy=xtanθgx22v2sec2θ....(i)dydθ=xsec2θgx22v22sec2θtanθ0=xsec2θgx22v22sec2θtanθtanθ=v2gx2.....(ii)from(i)y=xtanθgx22v2sec2θymax=xv2gx2gx22v2(1+v2gx2)ymax=x.v2gx2gx22v2(1+v2gx2)ymax=x.v2gx2gx22v2(1+v2gx2)ymax=x.v2gx2gx22v2gx2v22v2gx2ymax=2v4g2x2v42v2gymax=v4g2x22v2g

Commented by Spillover last updated on 08/Jul/24

method 2

method2

Answered by mr W last updated on 08/Jul/24

Commented by mr W last updated on 08/Jul/24

x=v cos θ t ⇒t=(x/(v cos θ))  h=v sin θ t−((gt^2 )/2)=x tan θ−((gx^2 (1+tan^2  θ))/(2v^2 ))  let λ=tan θ  h=xλ−((gx^2 (1+λ^2 ))/(2v^2 ))  (dh/dλ)=x−((gx^2 2λ)/(2v^2 ))=0   ⇒λ=(v^2 /(gx)), i.e.  θ=tan^(−1) (v^2 /(gx))  h_(max) =x×(v^2 /(gx))−((gx^2 )/(2v^2 ))(1+(v^4 /(g^2 x^2 )))  ⇒h_(max) =((v^4 −g^2 x^2 )/(2gv^2 )) ✓  with x≤ maximum range (v^2 /g)

x=vcosθtt=xvcosθh=vsinθtgt22=xtanθgx2(1+tan2θ)2v2letλ=tanθh=xλgx2(1+λ2)2v2dhdλ=xgx22λ2v2=0λ=v2gx,i.e.θ=tan1v2gxhmax=x×v2gxgx22v2(1+v4g2x2)hmax=v4g2x22gv2withxmaximumrangev2g

Commented by peter frank last updated on 08/Jul/24

appriciate sir

appriciatesir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com