All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 209687 by uuuuu last updated on 18/Jul/24
Answered by lepuissantcedricjunior last updated on 18/Jul/24
k=∫sin2xsinx4+cosx2dx=∫2sinxcosxcosx4(1+tanx4)dx=∫2sinxcosx3×11+tanx4dx=>k=arctan(tanx2)+k
Answered by mr W last updated on 19/Jul/24
=∫sin2x(sin2x+cos2x)2−2sin2xcos2xdx=∫sin2x1−sin22x2dx=∫2sin2x2−sin22xdx=−∫d(cos2x)1+cos22x=−∫du1+u2=−tan−1u+C=−tan−1(cos2x)+C=tan−1(tan2x)+C
Answered by mathmax last updated on 19/Jul/24
I=∫sin(2x)sin4x+cos4xdx⇒I=∫sin(2x)(sin2x+cos2x)2−2sin2xcos2xdx=∫sin(2x)1−12sin2(2x)dx=∫2sin(2x)2−sin2(2x)dx(2x=t)=∫sint2−sin2tdt=∫sint(2−sint)(2+sint)dt=122∫(12−sint+12+sint)dt=122{I1−I2}I1=tan(t2)=y∫2dy(1+y2)(2−2y1+y2)=∫2dy2+2y2−2y=2∫dyy2−2y+1Δ=2−1=1⇒y1=2+12ety2=2−12⇒I1=2∫(1y−y1−1y−y2)dy=2ln∣y−y1y−y2∣+c1=2ln∣tanx−2+12tanx−2−12∣+c1=2ln∣2tanx−2−12tanx−2+1∣+c1I2=∫dt2+sint=tan(t2)=y∫2dy(1+y2)(2+2y1+y2)=∫2dy2+2y2+2y=2∫dyy2+2y+1y1=−2+12andy2=−2−12I2=2∫(1y−y1−1y−y2)dy=2ln∣y−y1y−y2∣+c2=2ln∣tanx+2−12tanx+2+12∣+c2=2ln∣2tanx+2−12tanx+2+1∣+c2⇒I=122{I1−I2}=12{ln∣2tanx−2−12tanx−2+1∣−ln∣2tanx+2−12tanx+2+1∣+c
Terms of Service
Privacy Policy
Contact: info@tinkutara.com