Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 209687 by uuuuu last updated on 18/Jul/24

Answered by lepuissantcedricjunior last updated on 18/Jul/24

k=∫((sin2x)/(sin^4 x+cos^2 x))dx    =∫((2sinxcosx)/(cos^4 x(1+tan^4 x)))dx    =∫((2sinx)/(cos^3 x))×(1/(1+tan^4 x))dx  =>k=arctan(tan^2 x)+k

k=sin2xsinx4+cosx2dx=2sinxcosxcosx4(1+tanx4)dx=2sinxcosx3×11+tanx4dx=>k=arctan(tanx2)+k

Answered by mr W last updated on 19/Jul/24

=∫((sin 2x)/((sin^2  x+cos^2  x)^2 −2 sin^2  x cos^2  x))dx  =∫((sin 2x)/(1−((sin^2  2x)/2)))dx  =∫((2 sin 2x)/(2−sin^2  2x))dx  =−∫((d(cos 2x))/(1+cos^2  2x))=−∫(du/(1+u^2 ))  =−tan^(−1) u+C  =−tan^(−1) (cos 2x)+C  =tan^(−1) (tan^2  x)+C

=sin2x(sin2x+cos2x)22sin2xcos2xdx=sin2x1sin22x2dx=2sin2x2sin22xdx=d(cos2x)1+cos22x=du1+u2=tan1u+C=tan1(cos2x)+C=tan1(tan2x)+C

Answered by mathmax last updated on 19/Jul/24

I=∫ ((sin(2x))/(sin^4 x+cos^4 x))dx ⇒I=∫((sin(2x))/((sin^2 x+cos^2 x)^2 −2sin^2 x cos^2 x))dx  =∫  ((sin(2x))/(1−(1/2)sin^2 (2x)))dx  =∫ ((2sin(2x))/(2−sin^2 (2x)))dx     (2x=t)  =∫  ((sint)/(2−sin^2 t))dt =∫((sint)/(((√2)−sint)((√2)+sint)))dt  =(1/(2(√2)))∫((1/( (√2)−sint))+(1/( (√2)+sint)))dt  =(1/(2(√2))){ I_1 −I_2 }  I_1 =_(tan((t/2))=y)   ∫    ((2dy)/((1+y^2 )((√2)−((2y)/(1+y^2 )))))  =∫    ((2dy)/( (√2)+(√2)y^2 −2y))=(√2)∫(dy/(y^2 −(√2)y+1))  Δ=2−1=1 ⇒y_1 =(((√2)+1)/2)  et y_2 =(((√2)−1)/2) ⇒I_1 =(√2)∫((1/(y−y_1 ))−(1/(y−y_2 )))dy  =(√2)ln∣((y−y_1 )/(y−y_2 ))∣+c_1 =(√2)ln∣((tanx−(((√2)+1)/2))/(tanx−(((√2)−1)/2)))∣+c_1   =(√2)ln∣((2tanx−(√2)−1)/(2tanx−(√2)+1))∣+c_1   I_2 =∫  (dt/( (√2)+sint)) =_(tan((t/2))=y) ∫    ((2dy)/((1+y^2 )((√2)+((2y)/(1+y^2 )))))  =∫  ((2dy)/( (√2)+(√2)y^2 +2y))=(√2)∫(dy/(y^2 +(√2)y+1))  y_1 =((−(√2)+1)/2) and y_2 =((−(√2)−1)/2)  I_2 =(√2)∫((1/(y−y_1 ))−(1/(y−y_2 )))dy  =(√2)ln∣((y−y_1 )/(y−y_2 ))∣ +c_2 =(√2)ln∣((tanx+(((√2)−1)/2))/(tanx+(((√2)+1)/2)))∣+c_2   =(√2)ln∣((2tanx+(√2)−1)/(2tanx+(√2)+1))∣ +c_2  ⇒  I=(1/(2(√2))){I_1 −I_2 }=(1/2){ln∣((2tanx−(√2)−1)/(2tanx−(√2)+1))∣  −ln∣((2tanx+(√2)−1)/(2tanx+(√2)+1))∣ +c

I=sin(2x)sin4x+cos4xdxI=sin(2x)(sin2x+cos2x)22sin2xcos2xdx=sin(2x)112sin2(2x)dx=2sin(2x)2sin2(2x)dx(2x=t)=sint2sin2tdt=sint(2sint)(2+sint)dt=122(12sint+12+sint)dt=122{I1I2}I1=tan(t2)=y2dy(1+y2)(22y1+y2)=2dy2+2y22y=2dyy22y+1Δ=21=1y1=2+12ety2=212I1=2(1yy11yy2)dy=2lnyy1yy2+c1=2lntanx2+12tanx212+c1=2ln2tanx212tanx2+1+c1I2=dt2+sint=tan(t2)=y2dy(1+y2)(2+2y1+y2)=2dy2+2y2+2y=2dyy2+2y+1y1=2+12andy2=212I2=2(1yy11yy2)dy=2lnyy1yy2+c2=2lntanx+212tanx+2+12+c2=2ln2tanx+212tanx+2+1+c2I=122{I1I2}=12{ln2tanx212tanx2+1ln2tanx+212tanx+2+1+c

Terms of Service

Privacy Policy

Contact: info@tinkutara.com