Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 210229 by mnjuly1970 last updated on 03/Aug/24

Answered by a.lgnaoui last updated on 03/Aug/24

8=a^3 +b^3 +6ab    16=(a^3 +4)+(b^3 +4)+6ab      { ((b^3 +4=16−(a^3 +b^3 )−6ab      (1))),(((1/(a^3 +4))+(1/(16−(a^3 +b^3 )−6ab))=x(2))) :}    (a^3 +4)+(b^3 +4)=16−6ab  a^3 +b^3 =(a+b)(a^2 +b^2 −ab)              =2(a^2 +b^2 −ab)  ⇒  { ((8−6ab=a^3 +b^3 )),((a^3 +b^3 =2(a^2 +b^2 )−2ab)) :}  (1/(a^3 +4))+(1/8)=x=((12+a^3 )/(8(a^3 +4)))     (3)  a+b=2       b=2−a    alors (1/(a^3 +4))+(1/(12−a^3 −2a(2−a)))=x         soit      −(1/8)+(1/(12−a^3 −2a(2−a)))=0  8−12+a^3 +2a(2−a)=0  a^3 −4+2a(2−a)=0  a^3 −2a^2 +4a−4=0  x=((a^3 −2a^2 +4a−4)/(8−(a^3 −2a^2 +4a−4)))  soit 𝛠=a^3 −2a^2 +4a−4  alors  x= (𝛠/(8−𝛠))   a+b=2    ⇒   a≤2   { ((a=2      x=((1/2)/(8−1/2))=(1/(15))   b=0)),((a<2  ⇒  )) :}   a=1,295597752..    ϱ=0  a=2⇒b=0     (1/(12))+(1/4)=(1/3)=(5/(15))    <((10)/(15))  b=2   a=0  (1/4)+(1/8)=(3/8)=((15)/(40))≤((16)/(40))=(2/5)  or  (1/3) <(3/8)       { (((1/3)=  minimum relatif)),(((3/8)=maximum relatif)) :}     ⇒      (1/3)<(1/(a^3 +4))+(1/(b^3 +4))<(3/8)  ≤(2/5)  autre methode  (3)⇒ (dx/da)=(1/8)(((3a^2 (4+a^3 )−(12+a^3 )3a^2 )/((4+a^3 )^2 )))       ⇒3a^2 /(4+a^3 )^2 max=((24a^2 )/((4+a^3 )^2 )) ⇒  a=0 soit  b=2  alors      (1/(a^3 +4))+(1/(b^3 +4))=(3/8)=((15)/(40))≤((16)/(40))=(2/5)

8=a3+b3+6ab16=(a3+4)+(b3+4)+6ab{b3+4=16(a3+b3)6ab(1)1a3+4+116(a3+b3)6ab=x(2)(a3+4)+(b3+4)=166aba3+b3=(a+b)(a2+b2ab)=2(a2+b2ab){86ab=a3+b3a3+b3=2(a2+b2)2ab1a3+4+18=x=12+a38(a3+4)(3)a+b=2b=2aalors1a3+4+112a32a(2a)=xsoit18+112a32a(2a)=0812+a3+2a(2a)=0a34+2a(2a)=0a32a2+4a4=0x=a32a2+4a48(a32a2+4a4)soitϱ=a32a2+4a4alorsx=ϱ8ϱa+b=2a2{a=2x=1/281/2=115b=0a<2a=1,295597752..ϱ=0a=2b=0112+14=13=515<1015b=2a=014+18=38=15401640=25or13<38{13=minimumrelatif38=maximumrelatif13<1a3+4+1b3+4<3825autremethode(3)dxda=18(3a2(4+a3)(12+a3)3a2(4+a3)2)3a2/(4+a3)2max=24a2(4+a3)2a=0soitb=2alors1a3+4+1b3+4=38=15401640=25

Answered by Frix last updated on 04/Aug/24

b=2−a; 0≤a≤2  (1/(a^3 +4))+(1/(b^3 +4))=  =−((2(3a^2 −6a+8))/(a^6 +6a^5 +12a^4 −8a^3 −24a^2 +48a−48))=  =−((2(3a(2−a)−8))/(a^3 (2−a)^3 −24a(2−a)+48))  0≤a≤2 ⇒ 0≤a(2−a)≤1  t=a(2−a), 0≤t≤1 ⇒  (1/3)≤−((2(3t−8))/(t^3 −24t+48))≤(2/5)

b=2a;0a21a3+4+1b3+4==2(3a26a+8)a6+6a5+12a48a324a2+48a48==2(3a(2a)8)a3(2a)324a(2a)+480a20a(2a)1t=a(2a),0t1132(3t8)t324t+4825

Answered by A5T last updated on 05/Aug/24

(d/da)((1/(a^3 +4))+(1/((2−a)^3 +4)))=((−3a^2 )/((a^3 +4)^2 ))+((3(2−a)^2 )/([(2−a)^3 +4]^2 ))=0  ⇒(((a(√3))^2 )/([(√3)(2−a)]^2 ))=(((a^3 +4)^2 )/([(2−a)^3 +4]^2 ))⇒(a/(2−a))=+_− ((a^3 +4)/((2−a)^3 +4))  Case I: a(2−a)^3 +4a=(2−a)a^3 +4(2−a)  ⇒a(2−a)[(2−a)^2 −a^2 ]=−4a+8−4a  ⇒a(2−a)(4−4a)=8(1−a)⇒a=1 or a^2 −2a+2=0  ⇒Equality and maximum holds at a=1⇒b=1

dda(1a3+4+1(2a)3+4)=3a2(a3+4)2+3(2a)2[(2a)3+4]2=0(a3)2[3(2a)]2=(a3+4)2[(2a)3+4]2a2a=+a3+4(2a)3+4CaseI:a(2a)3+4a=(2a)a3+4(2a)a(2a)[(2a)2a2]=4a+84aa(2a)(44a)=8(1a)a=1ora22a+2=0Equalityandmaximumholdsata=1b=1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com