All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 210229 by mnjuly1970 last updated on 03/Aug/24
Answered by a.lgnaoui last updated on 03/Aug/24
8=a3+b3+6ab16=(a3+4)+(b3+4)+6ab{b3+4=16−(a3+b3)−6ab(1)1a3+4+116−(a3+b3)−6ab=x(2)(a3+4)+(b3+4)=16−6aba3+b3=(a+b)(a2+b2−ab)=2(a2+b2−ab)⇒{8−6ab=a3+b3a3+b3=2(a2+b2)−2ab1a3+4+18=x=12+a38(a3+4)(3)a+b=2b=2−aalors1a3+4+112−a3−2a(2−a)=xsoit−18+112−a3−2a(2−a)=08−12+a3+2a(2−a)=0a3−4+2a(2−a)=0a3−2a2+4a−4=0x=a3−2a2+4a−48−(a3−2a2+4a−4)soitϱ=a3−2a2+4a−4alorsx=ϱ8−ϱa+b=2⇒a⩽2{a=2x=1/28−1/2=115b=0a<2⇒a=1,295597752..ϱ=0a=2⇒b=0112+14=13=515<1015b=2a=014+18=38=1540⩽1640=25or13<38{13=minimumrelatif38=maximumrelatif⇒13<1a3+4+1b3+4<38⩽25autremethode(3)⇒dxda=18(3a2(4+a3)−(12+a3)3a2(4+a3)2)⇒3a2/(4+a3)2max=24a2(4+a3)2⇒a=0soitb=2alors1a3+4+1b3+4=38=1540⩽1640=25
Answered by Frix last updated on 04/Aug/24
b=2−a;0⩽a⩽21a3+4+1b3+4==−2(3a2−6a+8)a6+6a5+12a4−8a3−24a2+48a−48==−2(3a(2−a)−8)a3(2−a)3−24a(2−a)+480⩽a⩽2⇒0⩽a(2−a)⩽1t=a(2−a),0⩽t⩽1⇒13⩽−2(3t−8)t3−24t+48⩽25
Answered by A5T last updated on 05/Aug/24
dda(1a3+4+1(2−a)3+4)=−3a2(a3+4)2+3(2−a)2[(2−a)3+4]2=0⇒(a3)2[3(2−a)]2=(a3+4)2[(2−a)3+4]2⇒a2−a=+−a3+4(2−a)3+4CaseI:a(2−a)3+4a=(2−a)a3+4(2−a)⇒a(2−a)[(2−a)2−a2]=−4a+8−4a⇒a(2−a)(4−4a)=8(1−a)⇒a=1ora2−2a+2=0⇒Equalityandmaximumholdsata=1⇒b=1
Terms of Service
Privacy Policy
Contact: info@tinkutara.com