Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 210234 by peter frank last updated on 03/Aug/24

Commented by Pnk2024 last updated on 03/Aug/24

 we know that    sin^2 θ+cos^2 θ=1  ⇒  cos^2 θ=1−sin^2 θ  ⇒  cosθ ×cosθ = (1+sinθ)(1−sinθ)  ⇒ ((cosθ)/(1−sinθ)) = ((1+sinθ)/(cosθ))  ⇒ ((cosθ)/(1−sinθ))=((1+sinθ−cosθ)/(cosθ−(1−sinθ))) by theorem of equal ratio  ⇒ ((sinθ−cosθ+1)/(sinθ+cosθ−1))=((cosθ /cosθ)/((1−sinθ)/cosθ))                                          =(1/((1/(cosθ))−((sinθ)/(cosθ))))  ⇒ ((sinθ−cosθ+1)/(sinθ+cosθ−1))=(1/(secθ−tanθ))       this is proved

weknowthatsin2θ+cos2θ=1cos2θ=1sin2θcosθ×cosθ=(1+sinθ)(1sinθ)cosθ1sinθ=1+sinθcosθcosθ1sinθ=1+sinθcosθcosθ(1sinθ)bytheoremofequalratiosinθcosθ+1sinθ+cosθ1=cosθ/cosθ(1sinθ)/cosθ=11cosθsinθcosθsinθcosθ+1sinθ+cosθ1=1secθtanθthisisproved

Commented by peter frank last updated on 04/Aug/24

thank you

thankyou

Answered by efronzo1 last updated on 04/Aug/24

  ((sin θ−cos θ+1)/(sin θ+cos θ−1)) =^?  (1/(sec θ−tan θ))     ⋐

sinθcosθ+1sinθ+cosθ1=?1secθtanθ

Commented by peter frank last updated on 04/Aug/24

thank you

thankyou

Answered by BaliramKumar last updated on 04/Aug/24

 (((sinx − cosx + 1)/cosx)/((sinx + cosx − 1)/cosx)) = ((tanx + secx − 1)/(tanx − secx + 1))    ((tanx + secx − 1)/(tanx − secx + (sec^2 x − tan^2 x)))    ((tanx + secx − 1)/((tanx − secx) + (secx − tanx)(secx + tanx)))    ((tanx + secx − 1)/((secx − tanx)(−1 + secx + tanx)))    (((tanx + secx − 1))/((secx − tanx)(tanx + secx − 1)))   = (1/(secx − tanx))

(sinxcosx+1)/cosx(sinx+cosx1)/cosx=tanx+secx1tanxsecx+1tanx+secx1tanxsecx+(sec2xtan2x)tanx+secx1(tanxsecx)+(secxtanx)(secx+tanx)tanx+secx1(secxtanx)(1+secx+tanx)(tanx+secx1)(secxtanx)(tanx+secx1)=1secxtanx

Commented by peter frank last updated on 04/Aug/24

thank you

thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com