Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 210439 by universe last updated on 09/Aug/24

Commented by universe last updated on 09/Aug/24

prove that the sequence is bounded and   convergent

provethatthesequenceisboundedandconvergent

Answered by aleks041103 last updated on 09/Aug/24

f(x) = (x+2)2^(−x)   f ′(x) = 2^(−x) −ln(2)(x+2)2^(−x) =  =(1−ln(2)(x+2))2^(−x) =  =−ln(2)2^(−x) (x+(2−(1/(ln(2)))))  ⇒x<(1/(ln(2)))−2 → f(x)↗       x>(1/(ln(2)))−2 → f(x)↘  ⇒f(x)≤f((1/(ln(2)))−2)=(1/(ln(2)))2^(2−(1/(ln(2)))) =  =(4/(e ln(2))) <(4/((5/2) (2/3)))=2.4   ⇒x_(n+1) =3−f(x_n )>3−2.4>0  x_1 =1>0  ⇒x_n >0  f(x_n >0)<f(0)=2⇒f(x_n )<2⇒x_(n+1) >1  f(x_n >1)>lim_(x→∞) f(x)=0⇒f(x_n >1)>0  ⇒x_n <3    x_n ∈[1,3)    by virtue of the graph of the function we can  argue that x_n →2  to prove it we will use the fixed point theorem  2−x_(n+1) =2−(3−((x_n +2)/2^x_n  ))=((x_n +2)/2^x_n  )−1=  =((4−(2−x_n ))/2^(2−(2−x_n )) )−1  let a_n =2−x_n , then a_n ∈(−1,1]  ⇒a_(n+1) =((4−a_n )/4)2^a_n  −1=2^a_n  −1−(1/4)a_n 2^a_n  =  = a_n  ( ((2^a_n  −1)/a_n ) − (2^a_n  /4) )  g(x)=((2^x −1)/x)−(2^x /4)  it is known from the series expansion of  2^x  that ((2^x −1)/x) is monotonically increasing.  for x∈(−1,1) we have  g(x)>((2^(−1) −1)/(−1))−(2^x /4)=(1/2)−(2^x /4)>(1/2)−(2/4)=0  also  g(x)<((2^1 −1)/1)−(2^x /4)=1−(2^x /4)<1−(2^(−1) /4)=(7/8)  ⇒∣a_(n+1) ∣≤(7/8)∣a_n ∣⇒∣a_n ∣≤∣a_1 ∣((7/8))^(n−1) →0  ⇒a_n →0  ⇒x_n →2

f(x)=(x+2)2xf(x)=2xln(2)(x+2)2x==(1ln(2)(x+2))2x==ln(2)2x(x+(21ln(2)))x<1ln(2)2f(x)x>1ln(2)2f(x)f(x)f(1ln(2)2)=1ln(2)221ln(2)==4eln(2)<45223=2.4xn+1=3f(xn)>32.4>0x1=1>0xn>0f(xn>0)<f(0)=2f(xn)<2xn+1>1f(xn>1)>limfx(x)=0f(xn>1)>0xn<3xn[1,3)byvirtueofthegraphofthefunctionwecanarguethatxn2toproveitwewillusethefixedpointtheorem2xn+1=2(3xn+22xn)=xn+22xn1==4(2xn)22(2xn)1letan=2xn,thenan(1,1]an+1=4an42an1=2an114an2an==an(2an1an2an4)g(x)=2x1x2x4itisknownfromtheseriesexpansionof2xthat2x1xismonotonicallyincreasing.forx(1,1)wehaveg(x)>21112x4=122x4>1224=0alsog(x)<21112x4=12x4<1214=78⇒∣an+1∣⩽78an∣⇒∣an∣⩽∣a1(78)n10an0xn2

Commented by universe last updated on 09/Aug/24

thank you so much sir

thankyousomuchsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com