All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 210439 by universe last updated on 09/Aug/24
Commented by universe last updated on 09/Aug/24
provethatthesequenceisboundedandconvergent
Answered by aleks041103 last updated on 09/Aug/24
f(x)=(x+2)2−xf′(x)=2−x−ln(2)(x+2)2−x==(1−ln(2)(x+2))2−x==−ln(2)2−x(x+(2−1ln(2)))⇒x<1ln(2)−2→f(x)↗x>1ln(2)−2→f(x)↘⇒f(x)⩽f(1ln(2)−2)=1ln(2)22−1ln(2)==4eln(2)<45223=2.4⇒xn+1=3−f(xn)>3−2.4>0x1=1>0⇒xn>0f(xn>0)<f(0)=2⇒f(xn)<2⇒xn+1>1f(xn>1)>limfx→∞(x)=0⇒f(xn>1)>0⇒xn<3xn∈[1,3)byvirtueofthegraphofthefunctionwecanarguethatxn→2toproveitwewillusethefixedpointtheorem2−xn+1=2−(3−xn+22xn)=xn+22xn−1==4−(2−xn)22−(2−xn)−1letan=2−xn,thenan∈(−1,1]⇒an+1=4−an42an−1=2an−1−14an2an==an(2an−1an−2an4)g(x)=2x−1x−2x4itisknownfromtheseriesexpansionof2xthat2x−1xismonotonicallyincreasing.forx∈(−1,1)wehaveg(x)>2−1−1−1−2x4=12−2x4>12−24=0alsog(x)<21−11−2x4=1−2x4<1−2−14=78⇒∣an+1∣⩽78∣an∣⇒∣an∣⩽∣a1∣(78)n−1→0⇒an→0⇒xn→2
thankyousomuchsir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com