All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 210441 by universe last updated on 09/Aug/24
Answered by aleks041103 last updated on 09/Aug/24
(i)foroddn,thefunctionsinn(nx)issimilartosin(x)withthefactthattheprimitivefunctionoscilatesbetween0andthemaximalpossiblevalue∫0π/nsinn(nx)dx=1n∫0πsinn(x)dx⩽⩽1n∫0πsin(x)dx=2nsn=Fn(1)−Fn(0)foroddnwehaveFn(x)∈[0,2/n]thensn⩽2n,oddn.
(ii)forevenn:∫01sinn(nx)dx=1n∫0nsinn(x)dx==1n[∑⌊n/π⌋−1k=0∫πkπ(k+1)sinn(x)dx+∫π⌊n/π⌋nsinn(x)dx]==1n(⌊nπ⌋+c)∫0πsinn(x)dxwhere0<c<1.nowletIn=∫0πsin2n(x)dx==∫0πsin2n−2(x)dx−∫0πcos(x)d(sin2n−1(x)2n−1)dx==In−1−[sin2n−1(x)cos(x)2n−1]0π−12n−1∫0πsin2n(x)dx==In−1−12n−1In⇒In−1=2n2n−1In⇒In=2n−12nIn−1⇒In=(2n−1)(2n−3)...3.1(2n)(2n−2)...4.2I0I0=∫0πdx=π⇒In=(2n−1)!!(2n)!!π(2n)!!=2nn!(2n−1)!!=(2n)!(2n)!!=(2n)!2nn!⇒In=(2n)!4n(n!)2π⇒s2n=12n(⌊2nπ⌋+cn)In=π2n(⌊2nπ⌋+cn)(2n)!4n(n!)2Stirling:x!∼2πx(xe)x⇒(2n)!∼4πn(2ne)2n=4πn4n(ne)2n⇒(n!)2∼2πn(ne)2n⇒s2n=π2n(⌊2nπ⌋+cn)(2n)!4n(n!)2∼π2n(⌊2nπ⌋+cn)4πn2πn⇒s2n∼π2n(⌊2nπ⌋+cn)1πnitiseasytoseethatπ2n⌊2nπ⌋∼1⇒s2n∼1πn⇒s2n→0from(i)wehave0<s2n+1<22n+1⇒s2n+1→0⇒sn→0⇒theonlylimitingpointis0.
Commented by hardmath last updated on 11/Aug/24
Dear professor, your solutions are perfect
Terms of Service
Privacy Policy
Contact: info@tinkutara.com