Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 210441 by universe last updated on 09/Aug/24

Answered by aleks041103 last updated on 09/Aug/24

(i)   for odd n, the function sin^n (nx) is similar  to sin(x) with the fact that the primitive function oscilates  between 0 and the maximal possible value  ∫_0 ^( π/n) sin^n (nx)dx = (1/n)∫_0 ^( π) sin^n (x)dx≤  ≤(1/n)∫_0 ^( π) sin(x)dx=(2/n)    s_n =F_n (1)−F_n (0)  for odd n we have F_n (x)∈[0,2/n]  then s_n ≤(2/n), odd n.

(i)foroddn,thefunctionsinn(nx)issimilartosin(x)withthefactthattheprimitivefunctionoscilatesbetween0andthemaximalpossiblevalue0π/nsinn(nx)dx=1n0πsinn(x)dx1n0πsin(x)dx=2nsn=Fn(1)Fn(0)foroddnwehaveFn(x)[0,2/n]thensn2n,oddn.

Answered by aleks041103 last updated on 09/Aug/24

(ii) for even n:  ∫_0 ^( 1) sin^n (nx)dx=(1/n)∫_0 ^( n) sin^n (x)dx=  =(1/n)[Σ_(k=0) ^(⌊n/π⌋−1) ∫_(πk) ^( π(k+1)) sin^n (x)dx + ∫_(π⌊n/π⌋) ^( n) sin^n (x)dx]=  =(1/n)(⌊(n/π)⌋+c)∫_0 ^( π) sin^n (x)dx  where 0<c<1.    now let  I_n =∫_0 ^( π) sin^(2n) (x)dx=  =∫_0 ^( π) sin^(2n−2) (x)dx − ∫_0 ^( π) cos(x)d(((sin^(2n−1) (x))/(2n−1)))dx=  =I_(n−1) −[((sin^(2n−1) (x)cos(x))/(2n−1))]_0 ^π −(1/(2n−1))∫_0 ^( π) sin^(2n) (x)dx=  =I_(n−1) −(1/(2n−1))I_n   ⇒I_(n−1) =((2n)/(2n−1))I_n   ⇒I_n =((2n−1)/(2n))I_(n−1)   ⇒I_n =(((2n−1)(2n−3)...3.1)/((2n)(2n−2)...4.2))I_0   I_0 =∫_0 ^( π) dx=π  ⇒I_n =(((2n−1)!!)/((2n)!!))π  (2n)!!=2^n n!  (2n−1)!!=(((2n)!)/((2n)!!))=(((2n)!)/(2^n n!))  ⇒I_n =(((2n)!)/(4^n (n!)^2 ))π  ⇒s_(2n) =(1/(2n))(⌊((2n)/π)⌋+c_n )I_n =(π/(2n))(⌊((2n)/π)⌋+c_n )(((2n)!)/(4^n (n!)^2 ))  Stirling:  x! ∼ (√(2πx)) ((x/e))^x   ⇒(2n)! ∼ (√(4πn))(((2n)/e))^(2n) =(√(4πn ))4^n  ((n/e))^(2n)   ⇒(n!)^2  ∼ 2πn((n/e))^(2n)   ⇒s_(2n) =(π/(2n))(⌊((2n)/π)⌋+c_n )(((2n)!)/(4^n (n!)^2 )) ∼ (π/(2n))(⌊((2n)/π)⌋+c_n )((√(4πn))/(2πn))  ⇒s_(2n) ∼ (π/(2n))(⌊((2n)/π)⌋+c_n )(1/( (√(πn))))  it is easy to see that (π/(2n))⌊((2n)/π)⌋∼1  ⇒s_(2n) ∼ (1/( (√(πn))))  ⇒s_(2n) →0    from (i) we have 0<s_(2n+1) <(2/(2n+1))  ⇒s_(2n+1) →0    ⇒s_n →0  ⇒ the only limiting point is 0.

(ii)forevenn:01sinn(nx)dx=1n0nsinn(x)dx==1n[n/π1k=0πkπ(k+1)sinn(x)dx+πn/πnsinn(x)dx]==1n(nπ+c)0πsinn(x)dxwhere0<c<1.nowletIn=0πsin2n(x)dx==0πsin2n2(x)dx0πcos(x)d(sin2n1(x)2n1)dx==In1[sin2n1(x)cos(x)2n1]0π12n10πsin2n(x)dx==In112n1InIn1=2n2n1InIn=2n12nIn1In=(2n1)(2n3)...3.1(2n)(2n2)...4.2I0I0=0πdx=πIn=(2n1)!!(2n)!!π(2n)!!=2nn!(2n1)!!=(2n)!(2n)!!=(2n)!2nn!In=(2n)!4n(n!)2πs2n=12n(2nπ+cn)In=π2n(2nπ+cn)(2n)!4n(n!)2Stirling:x!2πx(xe)x(2n)!4πn(2ne)2n=4πn4n(ne)2n(n!)22πn(ne)2ns2n=π2n(2nπ+cn)(2n)!4n(n!)2π2n(2nπ+cn)4πn2πns2nπ2n(2nπ+cn)1πnitiseasytoseethatπ2n2nπ1s2n1πns2n0from(i)wehave0<s2n+1<22n+1s2n+10sn0theonlylimitingpointis0.

Commented by hardmath last updated on 11/Aug/24

  Dear professor, your solutions are perfect

Dear professor, your solutions are perfect

Terms of Service

Privacy Policy

Contact: info@tinkutara.com