Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 210457 by peter frank last updated on 09/Aug/24

Commented by peter frank last updated on 09/Aug/24

(b) and (c) help

(b)and(c)help

Commented by mr W last updated on 10/Aug/24

(b) is wrong.  the locus is  (x^2 /a^4 )+(y^2 /b^4 )=(1/(a^2 +b^2 ))

(b)iswrong.thelocusisx2a4+y2b4=1a2+b2

Commented by peter frank last updated on 11/Aug/24

thanks sir.please help

thankssir.pleasehelp

Answered by mr W last updated on 10/Aug/24

Commented by mr W last updated on 10/Aug/24

(c)  say the parameters of the ellipse are  a, b with a≥b and μ=(b/a)≤1.  say P(a cos θ, b sin θ)  tan α=((b tan θ)/a)=μ tan θ  tan β=(b/(a tan θ))=(μ/(tan θ))  say Q(a cos ϕ, −b sin ϕ)  tan β=((b tan ϕ)/a)=μ tan ϕ  tan α=(b/(a tan ϕ))=(μ/(tan ϕ))  ⇒tan θ tan ϕ=1  Φ=tan (α+β)     =((tan α+tan β)/(1−tan α tan β))     =((μ tan θ+μ tan ϕ)/(1−μ^2  tan θ tan ϕ))     =((μ(tan θ+(1/(tan θ))))/(1−μ^2 ))≥((2μ)/(1−μ^2 ))  Φ_(min) =((2μ)/(1−μ^2 )) when tan θ=(1/(tan θ)), i.e.  tan θ=1=tan ϕ, or θ=ϕ=(π/4)  θ=ϕ means that the conjugate   diameters are equal.  (α+β)_(min) =tan^(−1) ((2μ)/(1−μ^2 ))

(c)saytheparametersoftheellipsearea,bwithabandμ=ba1.sayP(acosθ,bsinθ)tanα=btanθa=μtanθtanβ=batanθ=μtanθsayQ(acosφ,bsinφ)tanβ=btanφa=μtanφtanα=batanφ=μtanφtanθtanφ=1Φ=tan(α+β)=tanα+tanβ1tanαtanβ=μtanθ+μtanφ1μ2tanθtanφ=μ(tanθ+1tanθ)1μ22μ1μ2Φmin=2μ1μ2whentanθ=1tanθ,i.e.tanθ=1=tanφ,orθ=φ=π4θ=φmeansthattheconjugatediametersareequal.(α+β)min=tan12μ1μ2

Commented by hardmath last updated on 11/Aug/24

  Dear professor, your solutions are perfect

Dear professor, your solutions are perfect

Commented by mr W last updated on 11/Aug/24

thanks!

thanks!

Commented by peter frank last updated on 14/Aug/24

thank you

thankyou

Answered by mr W last updated on 11/Aug/24

(c)  say the pole is P(u, v).  the polar of P with respect to the  hyperbola (x^2 /a^2 )−(y^2 /b^2 )=1 is  ((ux)/a^2 )−((vy)/b^2 )=1  such that it tangents the circle  x^2 +y^2 =r^2  (with r=ae=(√(a^2 +b^2 ))),  the distance from (0, 0) to  ((ux)/a^2 )−((vy)/b^2 )=1 must be r, i.e.  (1/( (√(((u/a^2 ))^2 +(−(v/b^2 ))^2 ))))=r=(√(a^2 +b^2 ))  ⇒(u^2 /a^4 )+(v^2 /b^4 )=(1/(a^2 +b^2 ))  i.e. the locus of the pole is  (x^2 /a^4 )+(y^2 /b^4 )=(1/(a^2 +b^2 ))

(c)saythepoleisP(u,v).thepolarofPwithrespecttothehyperbolax2a2y2b2=1isuxa2vyb2=1suchthatittangentsthecirclex2+y2=r2(withr=ae=a2+b2),thedistancefrom(0,0)touxa2vyb2=1mustber,i.e.1(ua2)2+(vb2)2=r=a2+b2u2a4+v2b4=1a2+b2i.e.thelocusofthepoleisx2a4+y2b4=1a2+b2

Commented by peter frank last updated on 11/Aug/24

thank you

thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com