Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 210572 by Spillover last updated on 12/Aug/24

Answered by mathmax last updated on 13/Aug/24

I=∫_0 ^∞  ((ln^2 x)/(1+x^4 ))dx  changement x=t^(1/4) give  I=(1/(16))∫_0 ^∞  ((ln^2 t)/(1+t))(1/4)t^((1/4)−1) dt⇒  64 I =∫_0 ^∞  (t^((1/4)−1) /(1+t))ln^2 (t)dt  let f(λ)=∫_0 ^∞  (t^(λ−1) /(1+t))dt   with 0<λ<1  f^((2)) (λ)=∫_0 ^∞ ((ln^2 t .t^(λ−1) )/(1+t))dt ⇒f^((2)) ((1/4))=64I  f(λ)=(π/(sin(πλ))) ⇒f^′ (λ)=−((π^2 cos(πλ))/(sin^2 (πλ)))  f^(′ ′) (λ)=−π^2 ×((−πsin(πλ)sin^2 (πλ)−πcos(πλ)2sin(πλ)cos(πλ))/(sin^4 (πλ)))  =−π^3 ×((sin^2 (πλ)+2cos^2 (πλ))/(sin^3 (πλ)))  =−π^3 ×((1+cos^2 (πλ))/(sin^3 (πλ))) ⇒  f^((2)) ((1/4))=−π^3 ×((1+cos^2 ((π/4)))/(sin^3 ((π/4))))  =−π^3 ×((1+(1/2))/(1/(2(√2))))=−π^3 (2(√2))(3/2)=−3(√2)π^3   ⇒64 I=−3(√2)π^3  ⇒I=−((3(√2))/(64))π^3

I=0ln2x1+x4dxchangementx=t14giveI=1160ln2t1+t14t141dt64I=0t1411+tln2(t)dtletf(λ)=0tλ11+tdtwith0<λ<1f(2)(λ)=0ln2t.tλ11+tdtf(2)(14)=64If(λ)=πsin(πλ)f(λ)=π2cos(πλ)sin2(πλ)f(λ)=π2×πsin(πλ)sin2(πλ)πcos(πλ)2sin(πλ)cos(πλ)sin4(πλ)=π3×sin2(πλ)+2cos2(πλ)sin3(πλ)=π3×1+cos2(πλ)sin3(πλ)f(2)(14)=π3×1+cos2(π4)sin3(π4)=π3×1+12122=π3(22)32=32π364I=32π3I=3264π3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com