Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 210573 by Spillover last updated on 12/Aug/24

Answered by mathmax last updated on 13/Aug/24

2I=∫_(−∞) ^(+∞) (dx/(x^4 +ix^2 +2)) (fonction paire)  roots      x^2 =t→t^2 +it+2  Δ=−1−8 =−9 ⇒t_1 =((−i+3i)/2)=i  and t_2 =((−i−3i)/2)=−2i ⇒2I=∫_(−∞) ^(+∞) (dx/((x^2 −i)(x^2 +2i)))  =(1/(3i))∫_(−∞) ^(+∞) ((1/(x^2 −i))−(1/(x^2 +2i)))dx ⇒  6i I =∫_(−∞) ^(+∞) (dx/(x^2 −i))−∫_(−∞) ^(+∞) (dx/(x^2 −(−2i)))  =I_1 −I_2   I_1 =(1/(2(√i)))∫_(−∞) ^(+∞) ((1/(x−(√i)))−(1/(x+(√i))))dx  on rappelle que ∫_(−∞) ^(+∞) (dx/(x−z))=iπ si Im(z)>0  et −iπ si Im(z)<0 ⇒  I_1 =(1/(2(√i))){iπ−(−iπ)=((2iπ)/(2(√i)))=π e^((iπ)/4)   I_2 =∫_(−∞) ^(+∞) (dx/((x−(√(−2i)))(x+(√(−2i)))))  =(1/( 2(√(−2i))))∫_(−∞) ^(+∞) ((1/(x−(√(−2i))))−(1/(x+(√(−2i)))))dx  =(1/( 2(√2)))e^((iπ)/4) ∫_(−∞) ^(+∞) ((1/(x−(√2)e^(−((iπ)/4)) ))−(1/(x+(√2)e^(−((iπ)/4)) )))dx  =(1/( 2(√2)))e^((iπ)/4) (−iπ−(iπ))=((−2iπ)/( 2(√2))) e^((iπ)/4)   =−((iπ)/( (√2))) e^((iπ)/4)   6iI=πe^((iπ)/4) −((iπ)/( (√2))) e^((iπ)/4)   =π(1−(i/( (√2))))e^((iπ)/4)  ⇒I=(π/(6i))(1−(i/( (√2))))e^((iπ)/4)   =(π/6)(−i−(1/( (√2))))((1/( (√2)))+(1/( (√2)))i)  =(π/(12))(−1−i(√2))(1+i)

2I=+dxx4+ix2+2(fonctionpaire)rootsx2=tt2+it+2Δ=18=9t1=i+3i2=iandt2=i3i2=2i2I=+dx(x2i)(x2+2i)=13i+(1x2i1x2+2i)dx6iI=+dxx2i+dxx2(2i)=I1I2I1=12i+(1xi1x+i)dxonrappelleque+dxxz=iπsiIm(z)>0etiπsiIm(z)<0I1=12i{iπ(iπ)=2iπ2i=πeiπ4I2=+dx(x2i)(x+2i)=122i+(1x2i1x+2i)dx=122eiπ4+(1x2eiπ41x+2eiπ4)dx=122eiπ4(iπ(iπ))=2iπ22eiπ4=iπ2eiπ46iI=πeiπ4iπ2eiπ4=π(1i2)eiπ4I=π6i(1i2)eiπ4=π6(i12)(12+12i)=π12(1i2)(1+i)

Commented by Frix last updated on 13/Aug/24

Error of sign somewhere, it must be  (π/(12))(+1−i(√2))(1+i)

Errorofsignsomewhere,itmustbeπ12(+1i2)(1+i)

Commented by mathmax last updated on 13/Aug/24

thanks

thanks

Terms of Service

Privacy Policy

Contact: info@tinkutara.com