Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 210629 by peter frank last updated on 14/Aug/24

Answered by Rasheed.Sindhi last updated on 14/Aug/24

 { ((x=a+(a+d)+(a+2d)+,...+(a+(m−1)d))),((y=(a+md)+(a+(m+1)d)+...+(a+(2m−1)d))),((z=(a+2md)+(a+(2m+1)d)+...+(a+(3m−1)d))) :}    { ((x−ma=(d)+(2d)+,...+((m−1)d))),((y−ma=(md)+((m+1)d)+...+((2m−1)d))),((z−ma=(2md)+((2m+1)d)+...+((3m−1)d))) :}     { ((((x−ma)/d)=(1)+(2)+,...+((m−1)))),((((y−ma)/d)=(m)+((m+1))+...+((2m−1)) )),((((z−ma)/d)=(2m)+((2m+1))+...+((3m−1)))) :}   ...

{x=a+(a+d)+(a+2d)+,...+(a+(m1)d)y=(a+md)+(a+(m+1)d)+...+(a+(2m1)d)z=(a+2md)+(a+(2m+1)d)+...+(a+(3m1)d){xma=(d)+(2d)+,...+((m1)d)yma=(md)+((m+1)d)+...+((2m1)d)zma=(2md)+((2m+1)d)+...+((3m1)d){xmad=(1)+(2)+,...+((m1))ymad=(m)+((m+1))+...+((2m1))zmad=(2m)+((2m+1))+...+((3m1))...

Answered by mr W last updated on 14/Aug/24

say the difference from the (m+1)^(th)   and the first term is t, then  each term in the second group is  by t larger than the corresponding  term in the first group. the sum of  the second group is by mt larger than  the sum of first group, etc.  a_1 , a_2 , ..., a_m   ← the first m terms, their sum is x  b_1 , b_2 , ..., b_m   ← the next m terms, their sum is y  c_1 , c_2 , ..., c_m   ← the last m terms, their sum is z  b_1 =a_1 +t, b_2 =a_2 +t, ..., b_m =a_m +t  c_1 =b_1 +t, c_2 =b_2 +t, ..., c_m =b_m +t  y=x+mt  z=y+mt  ⇒x+z=2y   ⇒x^2 +z^2 +2xz=4y^2   ⇒x^2 +z^2 −2xz=4y^2 −4xz  ⇒(x−z)^2 =4(y^2 −xz) ✓

saythedifferencefromthe(m+1)thandthefirsttermist,theneachterminthesecondgroupisbytlargerthanthecorrespondingterminthefirstgroup.thesumofthesecondgroupisbymtlargerthanthesumoffirstgroup,etc.a1,a2,...,amthefirstmterms,theirsumisxb1,b2,...,bmthenextmterms,theirsumisyc1,c2,...,cmthelastmterms,theirsumiszb1=a1+t,b2=a2+t,...,bm=am+tc1=b1+t,c2=b2+t,...,cm=bm+ty=x+mtz=y+mtx+z=2yx2+z2+2xz=4y2x2+z22xz=4y24xz(xz)2=4(y2xz)

Commented by mm1342 last updated on 14/Aug/24

very  excellent     ⋛

veryexcellent

Terms of Service

Privacy Policy

Contact: info@tinkutara.com