Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 211190 by mr W last updated on 30/Aug/24

Answered by A5T last updated on 31/Aug/24

Let ∠BCD=∠CBD=θ⇒∠DBA=90°−θ  ⇒∠ADB=90°−θ⇒∠DAB=2θ  ∠BCA=∠CAB=45°⇒∠ACD=45°−θ⇒?=45°−2θ  Let CD=BD=x and AD=AB=BC=y  Then AC^2 =2y^2 =x^2 +y^2 −2xycos(3θ+90°)...(i)  BD^2 =x^2 =x^2 +y^2 −2xycos(θ)⇒y=2xcosθ...(ii)  (ii) in (i)⇒4cos^2 θ=1−4(cosθ)cos(3θ+90)  ⇒θ=15°⇒?=45°−2θ=15°

LetBCD=CBD=θDBA=90°θADB=90°θDAB=2θBCA=CAB=45°ACD=45°θ?=45°2θLetCD=BD=xandAD=AB=BC=yThenAC2=2y2=x2+y22xycos(3θ+90°)...(i)BD2=x2=x2+y22xycos(θ)y=2xcosθ...(ii)(ii)in(i)4cos2θ=14(cosθ)cos(3θ+90)θ=15°?=45°2θ=15°

Commented by mr W last updated on 31/Aug/24

��

Answered by mm1342 last updated on 31/Aug/24

<DBC=θ ⇒<ADB=90−θ  &   <CDB=180−2θ  &  <DAB=2θ  ((CD)/(BC))=((sinθ)/(sin2θ)) =(1/(2cosθ))   &   ((BD)/(AD))=((sin2θ)/(cosθ))=2sinθ  ⇒sin2θ=(1/2)⇒θ=15  ✓

<DBC=θ⇒<ADB=90θ&<CDB=1802θ&<DAB=2θCDBC=sinθsin2θ=12cosθ&BDAD=sin2θcosθ=2sinθsin2θ=12θ=15

Commented by mr W last updated on 31/Aug/24

��

Answered by mr W last updated on 31/Aug/24

Terms of Service

Privacy Policy

Contact: info@tinkutara.com