Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 213281 by ajfour last updated on 02/Nov/24

Commented by ajfour last updated on 02/Nov/24

    Find r in terms of a, b.

Findrintermsofa,b.

Answered by mr W last updated on 02/Nov/24

say touching point from circle and  parabola at (±p, p^2 ).  tan θ=2p  r sin θ=p   ⇒r=((√(1+4p^2 ))/( 2))  y_c =p^2 +r cos θ=p^2 +(1/2)  eqn. of tangent line:  y=−((b^2 (x−a))/(a+b))=((ab^2 )/(a+b))−((b^2 x)/(a+b))  x^2 +(((ab^2 )/(a+b))−((b^2 x)/(a+b))−p^2 −(1/2))^2 =((1+4p^2 )/4)  x^2 +(((ab^2 )/(a+b))−p^2 −(1/2)−((b^2 x)/(a+b)))^2 =((1+4p^2 )/4)  [1+(b^4 /((a+b)^2 ))]x^2 −((2b^2 )/((a+b)))(((ab^2 )/(a+b))−p^2 −(1/2))x+(((ab^2 )/(a+b))−p^2 −(1/2))^2 −((1+4p^2 )/4)=0  Δ=(b^4 /((a+b)^2 ))(((ab^2 )/(a+b))−p^2 −(1/2))^2 −[1+(b^4 /((a+b)^2 ))][(((ab^2 )/(a+b))−p^2 −(1/2))^2 −((1+4p^2 )/4)]=0  ((1/4)+p^2 )[1+(b^4 /((a+b)^2 ))]−(((ab^2 )/(a+b))−(1/2)−p^2 )^2 =0  p^4 −(b^2 /(a+b))(2a+(b^2 /(a+b)))p^2 +(a^2 +(b^2 /4))((a^2 b^4 )/((a+b)^2 ))−((ab^2 )/(a+b))=0  ⇒p^2 =(1/2){(b^2 /(a+b))(2a+(b^2 /(a+b)))−(√([(2ab+(b^3 /(a+b)))^2 −4a^4 −a^2 b^2 ](b^4 /((a+b)^2 ))+((4ab^2 )/(a+b))))}

saytouchingpointfromcircleandparabolaat(±p,p2).tanθ=2prsinθ=pr=1+4p22yc=p2+rcosθ=p2+12eqn.oftangentline:y=b2(xa)a+b=ab2a+bb2xa+bx2+(ab2a+bb2xa+bp212)2=1+4p24x2+(ab2a+bp212b2xa+b)2=1+4p24[1+b4(a+b)2]x22b2(a+b)(ab2a+bp212)x+(ab2a+bp212)21+4p24=0Δ=b4(a+b)2(ab2a+bp212)2[1+b4(a+b)2][(ab2a+bp212)21+4p24]=0(14+p2)[1+b4(a+b)2](ab2a+b12p2)2=0p4b2a+b(2a+b2a+b)p2+(a2+b24)a2b4(a+b)2ab2a+b=0p2=12{b2a+b(2a+b2a+b)[(2ab+b3a+b)24a4a2b2]b4(a+b)2+4ab2a+b}

Commented by mr W last updated on 02/Nov/24

Answered by ajfour last updated on 02/Nov/24

let center of circle be origin.  y−(b^2 −y_c )=−((b^2 (x+b))/((a+b)))  tan α=(b^2 /(a+b))  (r/(cos α))=b^2 −y_c −(b^3 /(a+b))  r=(((a+b))/( (√(b^4 +(a+b)^2 )))){b^2 −y_c −(b^3 /(a+b))}  Eq. of parabola  y=x^2 −y_c   circle eq:  x^2 +y^2 =r^2   (x^2 −y_c )^2 +x^2 =r^2   x^4 −(1−2y_c )x^2 +y_c ^2 −r^2 =0  △=0  ⇒  (1−2y_c )^2 =4(y_c ^2 −r^2 )  ⇒  1−4y_c +4r^2 =0  since  r=(((a+b))/( (√(b^4 +(a+b)^2 )))){b^2 −y_c −(b^3 /(a+b))}  r=k(((ab^2 )/(a+b))−r^2 −(1/4))  r^2 +(r/k)−((ab^2 )/(a+b))+(1/4)=0  r=−(1/(2k))+(√((1/(4k^2 ))−(1/4)+((ab^2 )/(a+b))))  where   k=(((a+b))/( (√(b^4 +(a+b)^2 ))))

letcenterofcirclebeorigin.y(b2yc)=b2(x+b)(a+b)tanα=b2a+brcosα=b2ycb3a+br=(a+b)b4+(a+b)2{b2ycb3a+b}Eq.ofparabolay=x2yccircleeq:x2+y2=r2(x2yc)2+x2=r2x4(12yc)x2+yc2r2=0=0(12yc)2=4(yc2r2)14yc+4r2=0sincer=(a+b)b4+(a+b)2{b2ycb3a+b}r=k(ab2a+br214)r2+rkab2a+b+14=0r=12k+14k214+ab2a+bwherek=(a+b)b4+(a+b)2

Commented by ajfour last updated on 02/Nov/24

For a=4, b=2  (1/(2k))=((√(16+36))/(12))=((√(13))/6)  r=−((√(13))/6)+(√((13−9+96)/(36)))    r =((10−(√(13)))/6) ≈ 1.06574  y_c =(1/4)+((113−20(√(13)))/(36)) =((61−10(√(13)))/(18))    y_c ≈ 1.3858

Fora=4,b=212k=16+3612=136r=136+139+9636r=101361.06574yc=14+113201336=61101318yc1.3858

Commented by ajfour last updated on 02/Nov/24

Terms of Service

Privacy Policy

Contact: info@tinkutara.com