Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 21342 by xxyy@gmail.com last updated on 21/Sep/17

Answered by $@ty@m last updated on 23/Sep/17

Let 10+log_(10) (x)^(10+log_(10) (x)^(10+....) ) =y  ⇒10+log _(10) x^y =y  −−(1)  ⇒log _(10) x^y =y−10  ⇒ylog _(10) x=y−10  ⇒log _(10) x=((y−10)/y)  ⇒(1/(log _(10) x))=(y/(y−10))  ⇒(1/(log _(10) x))=((10+log x^y )/(log x^y )) , using (1)  ⇒(1/(log _(10) x))=1+((10)/(log x^y ))  −−(2)  ATQ,  1+x^y =(1/(log _(10) x)) −−(3)  from (2) & (3),  x^y =((10)/(logx^y ))  log (x^y )^x^y  =10  (x^y )^x^y  =10^(10)   x^y =10  1+x^y =11  (1/(log_(10) x))=11, from (3)  log_(10) x=(1/(11))  x=10^(1/(11))  Ans.

Let10+log10(x)10+log10(x)10+....=y10+log10xy=y(1)log10xy=y10ylog10x=y10log10x=y10y1log10x=yy101log10x=10+logxylogxy,using(1)1log10x=1+10logxy(2)ATQ,1+xy=1log10x(3)from(2)&(3),xy=10logxylog(xy)xy=10(xy)xy=1010xy=101+xy=111log10x=11,from(3)log10x=111x=10111Ans.

Commented by xxyy@gmail.com last updated on 23/Sep/17

thank very much sir

thankverymuchsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com