Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 213573 by mr W last updated on 09/Nov/24

Commented by mr W last updated on 09/Nov/24

find r=?

findr=?

Commented by ajfour last updated on 09/Nov/24

Sir, this we hsd solved before.

Commented by mr W last updated on 09/Nov/24

i′ve forgotten sir.

iveforgottensir.

Answered by mr W last updated on 09/Nov/24

Commented by mr W last updated on 09/Nov/24

R=((√(a^2 +b^2 −2ab cos α))/(2 sin α))  P((a/2), (√(R^2 −(a^2 /4))))  Q((r/(tan (α/2))), r)  PQ=R−r  (√(((a/2)−(r/(tan (α/2))))^2 +((√(R^2 −(a^2 /4)))−r)^2 ))=R−r  (r/(tan^2  (α/2)))=(a/(tan (α/2)))+2((√(R^2 −(a^2 /4)))−R)  ⇒r=a tan (α/2)+2((√(R^2 −(a^2 /4)))−R)tan^2  (α/2)

R=a2+b22abcosα2sinαP(a2,R2a24)Q(rtanα2,r)PQ=Rr(a2rtanα2)2+(R2a24r)2=Rrrtan2α2=atanα2+2(R2a24R)r=atanα2+2(R2a24R)tan2α2

Commented by ajfour last updated on 10/Nov/24

If smaller circle is small, then  (R−r)^2 =((r/(tan (α/2)))−(a/2))^2 +(r+(√(R^2 −(a^2 /4))))^2   ⇒ r=tan^2 ((α/2)){(a/(tan (α/2)−2))−2R−2(√(R^2 −(a^2 /4))) }

Ifsmallercircleissmall,then(Rr)2=(rtanα2a2)2+(r+R2a24)2r=tan2(α2){atanα222R2R2a24}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com