Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 213890 by Tawa11 last updated on 20/Nov/24

Answered by mr W last updated on 21/Nov/24

h=u sin θ t−((gt^2 )/2)  t=((u sin θ)/g)(1±(√(1−((2gh)/(u^2  sin^2  θ)))))    =((45 sin 52°)/(9.81))(1±(√(1−((2×9.81×12)/(45^2  sin^2  52°)))))    =6.87 s    / 0.36 s  R=u cos θ t      =45×cos 52°×6.87     / 0.36      =190.4m       / 9.86 m

h=usinθtgt22t=usinθg(1±12ghu2sin2θ)=45sin52°9.81(1±12×9.81×12452sin252°)=6.87s/0.36sR=ucosθt=45×cos52°×6.87/0.36=190.4m/9.86m

Commented by mr W last updated on 21/Nov/24

Commented by Tawa11 last updated on 21/Nov/24

Thanks sir. I appreciate.

Thankssir.Iappreciate.

Commented by mr W last updated on 21/Nov/24

what is right?

whatisright?

Answered by A5T last updated on 21/Nov/24

u_x =ucosθ; u_y =usinθ;u=45ms^(−1) ; θ=52°  H=maximum height;R=range  t=time from H to 12m above launching point;  T=flight time   H−12=((gt^2 )/2)⇒((g(((u^2 sin^2 θ)/g^2 )))/2)−12=((gt^2 )/2)  ⇒((u^2 sin^2 θ−24g)/(2g))=((gt^2 )/2)⇒t=((√(u^2 sin^2 θ−24g))/g)  ⇒T=((√(u^2 sin^2 θ−24g))/g)+((usinθ)/g)  R=u_x T=((ucosθ(√(u^2 sin^2 θ−24g)))/g)+((u^2 sin2θ)/(2g))  Then substitute necessary values.

ux=ucosθ;uy=usinθ;u=45ms1;θ=52°H=maximumheight;R=ranget=timefromHto12mabovelaunchingpoint;T=flighttimeH12=gt22g(u2sin2θg2)212=gt22u2sin2θ24g2g=gt22t=u2sin2θ24ggT=u2sin2θ24gg+usinθgR=uxT=ucosθu2sin2θ24gg+u2sin2θ2gThensubstitutenecessaryvalues.

Commented by Tawa11 last updated on 21/Nov/24

Thanks sir. I appreciate.

Thankssir.Iappreciate.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com