Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 21394 by mondodotto@gmail.com last updated on 22/Sep/17

Answered by mrW1 last updated on 22/Sep/17

t=(√(2x+1))  x=((t^2 −1)/2)  dx=tdt  ∫x(√(2x+1)) dx=∫((t^2 −1)/2)×t×tdt  =(1/2)∫(t^4 −t^2 )dt  =(t^5 /(10))−(t^3 /6)+C  =(t^3 /2)((t^2 /5)−(1/3))+C  =(((2x+1)(√(2x+1)))/2)[((2x+1)/5)−(1/3)]+C  =(((3x−1)(2x+1)(√(2x+1)))/(15))+C

t=2x+1x=t212dx=tdtx2x+1dx=t212×t×tdt=12(t4t2)dt=t510t36+C=t32(t2513)+C=(2x+1)2x+12[2x+1513]+C=(3x1)(2x+1)2x+115+C

Answered by sma3l2996 last updated on 22/Sep/17

t=(√(2x+1))⇒tdt=dx  ∫x(√(2x+1))dx=∫(((t^2 −1)/2))×t(tdt)=(1/2)∫(t^4 −t^2 )dt  =(t^3 /2)((1/5)t^2 −(1/3))+C  =(1/2)(√((2x+1)^3 ))(((2x+1)/5)−(1/3))+C  ∫x(√(2x+1))dx=(1/(30))(√((2x+1)^3 ))(6x−2)+C

t=2x+1tdt=dxx2x+1dx=(t212)×t(tdt)=12(t4t2)dt=t32(15t213)+C=12(2x+1)3(2x+1513)+Cx2x+1dx=130(2x+1)3(6x2)+C

Commented by edward last updated on 23/Sep/17

 Kigundus checks papa

Kigunduscheckspapa

Terms of Service

Privacy Policy

Contact: info@tinkutara.com