All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 21394 by mondodotto@gmail.com last updated on 22/Sep/17
Answered by mrW1 last updated on 22/Sep/17
t=2x+1x=t2−12dx=tdt∫x2x+1dx=∫t2−12×t×tdt=12∫(t4−t2)dt=t510−t36+C=t32(t25−13)+C=(2x+1)2x+12[2x+15−13]+C=(3x−1)(2x+1)2x+115+C
Answered by sma3l2996 last updated on 22/Sep/17
t=2x+1⇒tdt=dx∫x2x+1dx=∫(t2−12)×t(tdt)=12∫(t4−t2)dt=t32(15t2−13)+C=12(2x+1)3(2x+15−13)+C∫x2x+1dx=130(2x+1)3(6x−2)+C
Commented by edward last updated on 23/Sep/17
Kigunduscheckspapa
Terms of Service
Privacy Policy
Contact: info@tinkutara.com