Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 213960 by Tawa11 last updated on 22/Nov/24

Commented by Tawa11 last updated on 22/Nov/24

Prove by Mathematical Induction

ProvebyMathematicalInduction

Answered by A5T last updated on 24/Nov/24

S_n =Σ_(k=1) ^n k(n−k)=(((n−1)n(n+1))/6)  Assertion true for n=1,2  RTP: S_n ⇒S_(n+1)   S_n =Σ_(k=1) ^n k(n−k)=Σ_(k=1) ^n nk−Σ_(k=1) ^n k^2 =(((n−1)n(n+1))/6)  ⇒S_(n+1) =Σ_(k=1) ^(n+1) k(n+1−k)=(Σ_(k=1) ^(n+1) nk)+Σ_(k=1) ^(n+1) k−(Σ_(k=1) ^(n+1) k^2 )  =Σ_(k=1) ^n nk+n(n+1)+(((n+1)(n+2))/2)−Σ_(k=1) ^n k^2 −(n+1)^2   =Σ_(k=1) ^n nk−Σ_(k=1) ^n k^2 +(((n+1)(n))/2)  =(((n−1)n(n+1))/6)+((3n(n+1))/6)=(((n+1)[3n+n^2 −n])/6)  ⇒S_(n+1) =((n(n+1)(n+2))/6)

Sn=nk=1k(nk)=(n1)n(n+1)6Assertiontrueforn=1,2RTP:SnSn+1Sn=nk=1k(nk)=nk=1nknk=1k2=(n1)n(n+1)6Sn+1=n+1k=1k(n+1k)=(n+1k=1nk)+n+1k=1k(n+1k=1k2)=nk=1nk+n(n+1)+(n+1)(n+2)2nk=1k2(n+1)2=nk=1nknk=1k2+(n+1)(n)2=(n1)n(n+1)6+3n(n+1)6=(n+1)[3n+n2n]6Sn+1=n(n+1)(n+2)6

Commented by Tawa11 last updated on 12/Dec/24

Thanks sir. God bless you.

Thankssir.Godblessyou.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com