Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 214100 by ajfour last updated on 28/Nov/24

Answered by ajfour last updated on 29/Nov/24

Commented by ajfour last updated on 29/Nov/24

sin α=(a/(2b+a))=(1/(2s+1))   ∀  s=(b/a), t=(r/a)  A=2(√(ar))  B=(√((b+r)^2 −(p−r)^2 ))  A+B=(a+b)cos α  B^2 ={A−(a+b)cos α}^2   b^2 −p^2 +2r(b+p)  =4ar+(a+b)^2 cos^2 α−4(√(ar))(a+b)cos α  as  p=bsin α  2rb(1+sin α)+4(a+b)(√(ar))cos α           =4ar+a^2 cos^2 α+2abcos^2 α  recalling  s=(b/a), t=(r/a)  2t(s+ssin α−2)+4(1+s)(√t)cos α             −(1+2s)cos^2 α =0  (√t)=−(((1+s)cos α)/(s+ssin α−2))±(√(((((1+s)cos α)/(s+ssin α−2)))^2 +(((1+2s)cos^2 α)/(2(s+ssin α−2)))))  say a=1, b=2    ⇒ s=2,  sin α=(1/5),  cos α=((2(√6))/5)  (√t)=−3(√6)+2(√(15))  r=t=114−36(√(10))  ⇒  r≈ 0.1580

sinα=a2b+a=12s+1s=ba,t=raA=2arB=(b+r)2(pr)2A+B=(a+b)cosαB2={A(a+b)cosα}2b2p2+2r(b+p)=4ar+(a+b)2cos2α4ar(a+b)cosαasp=bsinα2rb(1+sinα)+4(a+b)arcosα=4ar+a2cos2α+2abcos2αrecallings=ba,t=ra2t(s+ssinα2)+4(1+s)tcosα(1+2s)cos2α=0t=(1+s)cosαs+ssinα2±((1+s)cosαs+ssinα2)2+(1+2s)cos2α2(s+ssinα2)saya=1,b=2s=2,sinα=15,cosα=265t=36+215r=t=1143610r0.1580

Commented by mr W last updated on 29/Nov/24

p=((ab)/(a+2b))  (√((a+b)^2 −(a−p)^2 ))=(√((a+r)^2 −(a−r)^2 ))+(√((b+r)^2 −(p−r)^2 ))  (√(b^2 +2ab+2ap−p^2 ))=2(√(ar))+(√(b^2 −p^2 +2(b+p)r))  (√(b^2 +2ab+2ap−p^2 ))−2(√(ar))=(√(b^2 −p^2 +2(b+p)r))  (2a−b−p)r−2(√(a(b+p)(2a+b−p)r))+a(b+p)=0  (√r)=(((√(a(b+p)(2a+b−p)))−(√(a(b+p)(2a+b−p)−a(b+p)(2a−b−p))))/(2a−b−p))  (√r)=(((√(a(b+p)))((√(2a+b−p))−(√(2b))))/(2a−b−p))  r=((a(b+p)((√(2a+b−p))−(√(2b)))^2 )/((2a−b−p)^2 ))  r=((a(b+((ab)/(a+2b)))((√(2a+b−((ab)/(a+2b))))−(√(2b)))^2 )/((2a−b−((ab)/(a+2b)))^2 ))  r=((ab(a+b)((√(a^2 +ab+b^2 ))−(√((a+2b)b)))^2 )/((a^2 +ab−b^2 )^2 ))  r=((ab(a+b)[a^2 +2ab+3b^2 −2(√(b(a+2b)(a^2 +ab+b^2 )))])/((a^2 +ab−b^2 )^2 ))

p=aba+2b(a+b)2(ap)2=(a+r)2(ar)2+(b+r)2(pr)2b2+2ab+2app2=2ar+b2p2+2(b+p)rb2+2ab+2app22ar=b2p2+2(b+p)r(2abp)r2a(b+p)(2a+bp)r+a(b+p)=0r=a(b+p)(2a+bp)a(b+p)(2a+bp)a(b+p)(2abp)2abpr=a(b+p)(2a+bp2b)2abpr=a(b+p)(2a+bp2b)2(2abp)2r=a(b+aba+2b)(2a+baba+2b2b)2(2ababa+2b)2r=ab(a+b)(a2+ab+b2(a+2b)b)2(a2+abb2)2r=ab(a+b)[a2+2ab+3b22b(a+2b)(a2+ab+b2)](a2+abb2)2

Commented by ajfour last updated on 29/Nov/24

Commented by ajfour last updated on 29/Nov/24

Now both of us have done better!

Nowbothofushavedonebetter!

Answered by mr W last updated on 28/Nov/24

Commented by mr W last updated on 28/Nov/24

for maximum small circle:  AF⊥FD  FE=(√((a+r)^2 −(a−r)^2 ))=2(√(ar))  (a+b)CD^2 +b(a+r)^2 =(a+2b)[(b+r)^2 +(a+b)b]  CD^2 =(((a+2b)[(b+r)^2 +(a+b)b]−b(a+r)^2 )/(a+b))  ED=(√((((a+2b)[(b+r)^2 +(a+b)b]−b(a+r)^2 )/(a+b))−r^2 ))  FD=2(√(ar))+(√((((a+2b)[(b+r)^2 +(a+b)b]−b(a+r)^2 )/(a+b))−r^2 ))  FD^2 =a^2 +(a+2b)^2   ⇒{2(√(ar))+(√((((a+2b)[(b+r)^2 +(a+b)b]−b(a+r)^2 )/(a+b))−r^2 ))}^2 =a^2 +(a+2b)^2

formaximumsmallcircle:AFFDFE=(a+r)2(ar)2=2ar(a+b)CD2+b(a+r)2=(a+2b)[(b+r)2+(a+b)b]CD2=(a+2b)[(b+r)2+(a+b)b]b(a+r)2a+bED=(a+2b)[(b+r)2+(a+b)b]b(a+r)2a+br2FD=2ar+(a+2b)[(b+r)2+(a+b)b]b(a+r)2a+br2FD2=a2+(a+2b)2{2ar+(a+2b)[(b+r)2+(a+b)b]b(a+r)2a+br2}2=a2+(a+2b)2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com