Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 214199 by mr W last updated on 01/Dec/24

Commented by mr W last updated on 01/Dec/24

[see Q214176]  find the radius of the maximal  circle inscribed between the curves  f(x) and g(x) as shown.

[seeQ214176]findtheradiusofthemaximalcircleinscribedbetweenthecurvesf(x)andg(x)asshown.

Answered by issac last updated on 01/Dec/24

Osculate circle radious=(1/κ)  κ=curvature of f(x) at x=α  κ=((∣f^((2)) (α)∣)/( (√((1+(f^((1)) (α))^2 )^3 ))))

Osculatecircleradious=1κκ=curvatureoff(x)atx=ακ=f(2)(α)(1+(f(1)(α))2)3

Answered by mr W last updated on 01/Dec/24

due to symmetry the center of circle  lies on the y−axis, say at (0, h).  the equation of circle is then  x^2 +(y−h)^2 =R^2     we only need to consider x>0.    say the circle touches g(x) at (s, t)  and touches f(x) at (p, q).  at touching point circle and curve  have same tangent line.    x^2 +(y−h)^2 =R^2   2x+2(y−h)(dy/dx)=0  y=ln x  (dy/dx)=(1/x)  s+(t−h)(1/s)=0   ⇒t−h=−s^2   s^2 +s^4 =R^2   ⇒s^2 =(((√(1+4R^2 ))−1)/2)  t=h−s^2 =h−(((√(1+4R^2 ))−1)/2)  t=ln s=(1/2)ln ((((√(1+4R^2 ))−1)/2))  ⇒h−(((√(1+4R^2 ))−1)/2)=(1/2)ln ((((√(1+4R^2 ))−1)/2))  ⇒h=(1/2)[(√(1+4R^2 ))−1+ln ((((√(1+4R^2 ))−1)/2))]    y=(3/x^3 )+(1/(15x))  (dy/dx)=−(9/x^4 )−(1/(15x^2 ))  2p−2(q−h)((9/p^4 )+(1/(15p^2 )))=0  ⇒q−h=((15p^5 )/(p^2 +135))  p^2 +(((15p^5 )/(p^2 +135)))^2 =R^2   ⇒R=(√(p^2 +(((15p^5 )/(p^2 +135)))^2 ))   ...(i)  q=h+((15p^5 )/(p^2 +135))  q=(3/p^3 )+(1/(15p))  ⇒h+((15p^5 )/(p^2 +135))=(3/p^3 )+(1/(15p))  ⇒h=(3/p^3 )+(1/(15p))−((15p^5 )/(p^2 +135))  (1/2)[(√(1+4R^2 ))−1+ln ((((√(1+4R^2 ))−1)/2))]           =(3/p^3 )+(1/(15p))−((15p^5 )/(p^2 +135))   ...(ii)  we can solve (i) and (ii) and get  p≈1.312274765822  R≈1.379982232083

duetosymmetrythecenterofcircleliesontheyaxis,sayat(0,h).theequationofcircleisthenx2+(yh)2=R2weonlyneedtoconsiderx>0.saythecircletouchesg(x)at(s,t)andtouchesf(x)at(p,q).attouchingpointcircleandcurvehavesametangentline.x2+(yh)2=R22x+2(yh)dydx=0y=lnxdydx=1xs+(th)1s=0th=s2s2+s4=R2s2=1+4R212t=hs2=h1+4R212t=lns=12ln(1+4R212)h1+4R212=12ln(1+4R212)h=12[1+4R21+ln(1+4R212)]y=3x3+115xdydx=9x4115x22p2(qh)(9p4+115p2)=0qh=15p5p2+135p2+(15p5p2+135)2=R2R=p2+(15p5p2+135)2...(i)q=h+15p5p2+135q=3p3+115ph+15p5p2+135=3p3+115ph=3p3+115p15p5p2+13512[1+4R21+ln(1+4R212)]=3p3+115p15p5p2+135...(ii)wecansolve(i)and(ii)andgetp1.312274765822R1.379982232083

Commented by mr W last updated on 01/Dec/24

Commented by a.lgnaoui last updated on 01/Dec/24

thank you very much

thankyouverymuch

Terms of Service

Privacy Policy

Contact: info@tinkutara.com