All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 21464 by mondodotto@gmail.com last updated on 24/Sep/17
Answered by myintkhaing last updated on 24/Sep/17
y+δy=tan(x+δx)δy=tan(x+δx)−tanx=(tan(x+δx)−tanx)tan(x+δx)+tanxtan(x+δx)+tanx=tan(x+δx)−tanxtan(x+δx)+tanx=tanx+tanδx1−tanxtanδx−tanxtan(x+δx)+tanx=tanδx(1+tan2x)(1−tanxtanδx)(tan(x+δx)+tanx)dydx=limδx→0tanδx(1+tan2x)δx(1−tanxtanδx)(tan(x+δx)+tanx)=limδx→0tanδxδxlimδx→0sec2x(1−tanxtanδx)(tan(x+δx)+tanx)=(1)sec2x(1)2tanxYou can't use 'macro parameter character #' in math modeYou can't use 'macro parameter character #' in math mode
Answered by $@ty@m last updated on 24/Sep/17
dydx=limδx→0tan(x+δx)−tanxδxdydx=limδx→0tan(x+δx)−tanxtan(x+δx)−tanx×tan(x+δx)−tanxδx=L1×L2whereL1=limδx→0tan(x+δx)−tanxtan(x+δx)−tanx=12tanx,usingformulalimx→axn−anx−a=nan−1pandL2=limδx→0tan(x+δx)−tanxδx=limδx→01δx[sin(x+δx)cos(x+δx)−sinxcosx]=....=...=sec2x{Doityourself}∴dydx=sec2x2tanx
Terms of Service
Privacy Policy
Contact: info@tinkutara.com