Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 21464 by mondodotto@gmail.com last updated on 24/Sep/17

Answered by myintkhaing last updated on 24/Sep/17

y+δy=(√(tan(x+δx)))  δy=(√(tan(x+δx)))−(√(tanx))       =((√(tan(x+δx)))−(√(tanx)))(((√(tan(x+δx)))+(√(tanx)))/((√(tan(x+δx)))+(√(tanx))))       =((tan(x+δx)−tanx)/((√(tan(x+δx)))+(√(tanx))))=((((tanx+tanδx)/(1−tanxtanδx))−tanx)/(tan(√((x+δx)))+(√(tanx))))  =((tanδx(1+tan^2 x))/((1−tanxtanδx)((√(tan(x+δx)))+(√(tanx)))))  (dy/dx)=lim_(δx→0)  ((tanδx(1+tan^2 x))/(δx(1−tanxtanδx)((√(tan(x+δx)))+(√(tanx)))))        =lim_(δx→0)  ((tanδx)/(δx)) lim_(δx→0)  ((sec^2 x)/((1−tanxtanδx)((√(tan(x+δx)))+(√(tanx)))))        =(1)((sec^2 x)/((1)2(√(tanx))))         = ((sec^2 x)/(2(√(tanx)))) #

y+δy=tan(x+δx)δy=tan(x+δx)tanx=(tan(x+δx)tanx)tan(x+δx)+tanxtan(x+δx)+tanx=tan(x+δx)tanxtan(x+δx)+tanx=tanx+tanδx1tanxtanδxtanxtan(x+δx)+tanx=tanδx(1+tan2x)(1tanxtanδx)(tan(x+δx)+tanx)dydx=limδx0tanδx(1+tan2x)δx(1tanxtanδx)(tan(x+δx)+tanx)=limδx0tanδxδxlimδx0sec2x(1tanxtanδx)(tan(x+δx)+tanx)=(1)sec2x(1)2tanxYou can't use 'macro parameter character #' in math mode

Answered by $@ty@m last updated on 24/Sep/17

(dy/dx)=lim_(δx→0) (((√(tan (x+δx)))−(√(tanx )))/(δx))  (dy/dx)=lim_(δx→0) (((√(tan (x+δx)))−(√(tanx )))/(tan(x+δx)−tan x))×((tan(x+δx)−tan x)/(δx))  =L_1 ×L_2   where L_1 =lim_(δx→0) (((√(tan (x+δx)))−(√(tanx )))/(tan(x+δx)−tan x))  =(1/(2(√(tan x)))) , using  formula lim_(x→a) ((x^n −a^n )/(x−a))=na^(n−1p)   and L_2 =lim_(δx→0) ((tan(x+δx)−tan x)/(δx))  =lim_(δx→0) (1/(δx))[((sin (x+δx))/(cos (x+δx)))−((sin x)/(cos x))]  =....  =...  =sec^2 x {Do it yourself}   ∴(dy/dx)=((sec^2 x)/(2(√(tanx ))))

dydx=limδx0tan(x+δx)tanxδxdydx=limδx0tan(x+δx)tanxtan(x+δx)tanx×tan(x+δx)tanxδx=L1×L2whereL1=limδx0tan(x+δx)tanxtan(x+δx)tanx=12tanx,usingformulalimxaxnanxa=nan1pandL2=limδx0tan(x+δx)tanxδx=limδx01δx[sin(x+δx)cos(x+δx)sinxcosx]=....=...=sec2x{Doityourself}dydx=sec2x2tanx

Terms of Service

Privacy Policy

Contact: info@tinkutara.com