Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 214722 by mr W last updated on 18/Dec/24

Commented by mr W last updated on 18/Dec/24

three identical cylinders are   released from the state as shown.  there is no friction anywhere.  find   1) the final speed of the lower  cylinders  2) after what time and with what  speed the middle cylinder hits the  ground

threeidenticalcylindersarereleasedfromthestateasshown.thereisnofrictionanywhere.find1)thefinalspeedofthelowercylinders2)afterwhattimeandwithwhatspeedthemiddlecylinderhitstheground

Answered by mr W last updated on 19/Dec/24

Commented by mr W last updated on 20/Dec/24

m=mass of each cylinder  ω=(dθ/dt)  X=2r sin θ  Y=2r cos θ  U=(dX/dt)=2rω cos θ  V=−(dY/dt)=2rω sin θ  2mgr(cos (π/6)−cos θ)=2×((mU^2 )/2)+((mV^2 )/2)  4gr(((√3)/2)−cos θ)=2×4r^2 ω^2 cos^2  θ+4r^2 ω^2 sin^2  θ  g(((√3)/2)−cos θ)=rω^2 (1+cos^2  θ)  ω^2 =((g(((√3)/2)−cos θ))/(r(1+cos^2  θ)))  2ω(dω/dθ)=(g/r)[((sin θ)/(1+cos^2  θ))+((2cos θ sin θ(((√3)/2)−cos θ))/((1+cos^2  θ)^2 ))]  ω(dω/dθ)=((g sin θ(1+(√3)cos θ−cos^2  θ))/(2r(1+cos^2  θ)^2 ))  A=(dU/dt)=2rω(−ω sin θ+cos θ (dω/dθ))  A=((g sin θ (cos^3  θ+3 cos θ−(√3)))/((1+cos^2  θ)^2 ))  N sin θ=mA  ⇒N=((mg (cos^3  θ+3 cos θ−(√3)))/((1+cos^2  θ)^2 ))  N=0:  cos^3  θ+3 cos θ−(√3)=0  cos θ=((((√7)+(√3))/2))^(1/3) −((((√7)−(√3))/2))^(1/3) =λ≈0.5282  U=cos θ(√((2((√3)−2cos θ))/(1+cos^2  θ)))(√(gr))  V=sin θ(√((2((√3)−2cos θ))/(1+cos^2  θ)))(√(gr))  dt=(dθ/ω)=(√((r(1+cos^2  θ))/(g(((√3)/2)−cos θ))))dθ  T_1 =(√(r/g))∫_(π/6) ^θ (√((1+cos^2  θ)/(((√3)/2)−cos θ)))dθ  T_1 =(√(r/g))∫_θ ^(π/6) (√((1+cos^2  θ)/((((√3)/2)−cos θ)(1−cos^2  θ))))d (cos θ)  T_1 =(√(r/g))∫_λ ^((√3)/2) (√((1+ξ^2 )/((1−ξ^2 )(((√3)/2)−ξ))))dξ      ≈2.36272(√(r/g))  h=r(1+2 cos θ)  V_2 =(√(V^2 +2gh))  V_2 =(√(gr))(√(((2(1−cos^2  θ)((√3)−2cos θ))/(1+cos^2  θ))+2(1+2 cos θ)))       ≈2.20741(√(gr))  T_2 =((V_2 −V)/g)  T_2 =[(√(((2(1−cos^2  θ)((√3)−2cos θ))/(1+cos^2  θ))+2(1+2 cos θ)))−sin θ(√((2((√3)−2cos θ))/(1+cos^2  θ)))](√(r/g))       ≈1.33510(√(r/g))  T=T_1 +T_2 ≈3.69782(√(r/g))  camparation:  free fall of the middle cylinder  from same hight (1+(√3))r:  V_2 =(√(2g(1+(√3))r))≈2.33754(√(gr))  T=(√((2(1+(√3))r)/g))≈2.33754(√(r/g))

m=massofeachcylinderω=dθdtX=2rsinθY=2rcosθU=dXdt=2rωcosθV=dYdt=2rωsinθ2mgr(cosπ6cosθ)=2×mU22+mV224gr(32cosθ)=2×4r2ω2cos2θ+4r2ω2sin2θg(32cosθ)=rω2(1+cos2θ)ω2=g(32cosθ)r(1+cos2θ)2ωdωdθ=gr[sinθ1+cos2θ+2cosθsinθ(32cosθ)(1+cos2θ)2]ωdωdθ=gsinθ(1+3cosθcos2θ)2r(1+cos2θ)2A=dUdt=2rω(ωsinθ+cosθdωdθ)A=gsinθ(cos3θ+3cosθ3)(1+cos2θ)2Nsinθ=mAN=mg(cos3θ+3cosθ3)(1+cos2θ)2N=0:cos3θ+3cosθ3=0cosθ=7+3237323=λ0.5282U=cosθ2(32cosθ)1+cos2θgrV=sinθ2(32cosθ)1+cos2θgrdt=dθω=r(1+cos2θ)g(32cosθ)dθT1=rgπ6θ1+cos2θ32cosθdθT1=rgθπ61+cos2θ(32cosθ)(1cos2θ)d(cosθ)T1=rgλ321+ξ2(1ξ2)(32ξ)dξ2.36272rgh=r(1+2cosθ)V2=V2+2ghV2=gr2(1cos2θ)(32cosθ)1+cos2θ+2(1+2cosθ)2.20741grT2=V2VgT2=[2(1cos2θ)(32cosθ)1+cos2θ+2(1+2cosθ)sinθ2(32cosθ)1+cos2θ]rg1.33510rgT=T1+T23.69782rgcamparation:freefallofthemiddlecylinderfromsamehight(1+3)r:V2=2g(1+3)r2.33754grT=2(1+3)rg2.33754rg

Commented by ajfour last updated on 20/Dec/24

https://youtube.com/shorts/iyQMnvfGLVI?si=T6BLqABWNk_2EqJT

Commented by mr W last updated on 20/Dec/24

��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com