Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 214793 by vijaysahu last updated on 19/Dec/24

Commented by Tinku Tara last updated on 20/Dec/24

Q2 put u=(π/2)−x to get  I=∫_0 ^(π/4) ((cos^4 x)/(sin^4 x+cos^4 x))dx  2I=∫_0 ^(π/4) 1dx=(π/4)

Q2putu=π2xtogetI=0π/4cos4xsin4x+cos4xdx2I=0π/41dx=π4

Commented by Tinku Tara last updated on 20/Dec/24

Q8 is straightforward formula

Q8isstraightforwardformula

Answered by MathematicalUser2357 last updated on 20/Dec/24

Q1 ∫(1/( (√(tan x))+1))dx=∫sec^2 x∙(1/(((√(tan x))+1)(tan^2 x+1)))dx  ⇒^(u=tan x⇒du=sec^2 xdx) ∫(1/(((√u)+1)(u^2 +1)))du  ⇒^(v=(√u)⇒du=(1/(2(√u)))du) 2∫(v/((v+1)(v^4 +1)))dv  Now we′re integrating the red side  ∫(v/((v+1)(v^4 +1)))dv=∫(((v^3 −v^2 +v+1)/(2(v^4 +1)))−(1/(2(v+1))))dv  =(1/2)∫((v^3 −v^2 +v+1)/(v^4 +1))dv−(1/2)∫(1/(v+1))dv  Now we′re integrating the blue side  ∫((v^3 −v^2 +v+1)/(v^4 +1))dv=∫((v^3 −v^2 +v+1)/((v^2 −(√2)v+1)(u^2 +(√2)v+1)))dv  =∫(((((√2)+2)v+(√2))/(2^(3/2) (v^2 +(√2)v+1)))+((((√2)−2)v+(√2))/(2^(3/2) (v^2 −(√2)+1))))dv  =(1/2^(3/2) )∫((((√2)+2)v+(√2))/(v^2 +(√2)v+1))dv+(1/2^(3/2) )∫((((√2)−2)v+(√2))/(v^2 −(√2)v+1))dv  Now we′re integrating the brown side  ∫((((√2)+2)v+(√2))/(v^2 +(√2)v+1))dv=∫(((((√2)+2)(2v+(√2)))/(2(v^2 +(√2)v+1)))+(((√2)−(((√2)+2)/( (√2))))/(v^2 +(√2)v+1)))dv  =(((√2)+2)/2)∫((2v+(√2))/(v^2 +(√2)v+1))dv+((√2)−(((√2)+2)/( (√2))))∫(1/(v^2 +(√2)v+1))dv  Holy...god...what a long integral expression  Now we′re integrating the black side#2  ∫((2v+(√2))/(v^2 +(√2)v+1))dv⇒^(w=v^2 +(√2)v+1⇒dv=(2v+(√2))dv) ∫(1/w)dw=ln w=ln(v^2 +(√2)v+1)  ∫(1/(v^2 +(√2)v+1))dv=∫(1/((v+(1/( (√2))))^2 +(1/2)))dv  ⇒^(w=(√2)v+1⇒dw=(√2)dv) ∫(1/( (√2)((w^2 /2)+(1/2))))dw=(1/( (√2)))∫(1/(w^2 +1))dw=(1/( (√2)))tan^(−1) w  =(1/( (√2)))tan^(−1) ((√2)v+1)  =(((√2)+2)/2)∫((2v+(√2))/(v^2 +(√2)v+1))dv+((√2)−(((√2)+2)/( (√2))))∫(1/(v^2 +(√2)v+1))dv  =((((√2)+2)ln(v^2 +(√2)v+1))/2)+(√2)((√2)−(((√2)+2)/( (√2))))tan^(−1) ((√2)v+1)  ... ...=Holy...god...what a terrible integral question

Q11tanx+1dx=sec2x1(tanx+1)(tan2x+1)dxu=tanxdu=sec2xdx1(u+1)(u2+1)duv=udu=12udu2v(v+1)(v4+1)dvNowwereintegratingtheredsidev(v+1)(v4+1)dv=(v3v2+v+12(v4+1)12(v+1))dv=12v3v2+v+1v4+1dv121v+1dvNowwereintegratingthebluesidev3v2+v+1v4+1dv=v3v2+v+1(v22v+1)(u2+2v+1)dv=((2+2)v+2232(v2+2v+1)+(22)v+2232(v22+1))dv=1232(2+2)v+2v2+2v+1dv+1232(22)v+2v22v+1dvNowwereintegratingthebrownside(2+2)v+2v2+2v+1dv=((2+2)(2v+2)2(v2+2v+1)+22+22v2+2v+1)dv=2+222v+2v2+2v+1dv+(22+22)1v2+2v+1dvHoly...god...whatalongintegralexpressionYou can't use 'macro parameter character #' in math mode2v+2v2+2v+1dvw=v2+2v+1dv=(2v+2)dv1wdw=lnw=ln(v2+2v+1)1v2+2v+1dv=1(v+12)2+12dvw=2v+1dw=2dv12(w22+12)dw=121w2+1dw=12tan1w=12tan1(2v+1)=2+222v+2v2+2v+1dv+(22+22)1v2+2v+1dv=(2+2)ln(v2+2v+1)2+2(22+22)tan1(2v+1)......=Holy...god...whataterribleintegralquestion

Commented by Tinku Tara last updated on 20/Dec/24

I=∫_(π/6) ^(π/3) (1/(1+(√(tanx))))dx    ....(1)  substitute u=(π/2)−x   du=−dx  x=(π/6)⇒u=(π/3)  x=(π/3)⇒u=(π/2)  I=∫_(π/3) ^(π/6) −(1/(1+(√(cotu))))du  =∫_(π/6) ^(π/3) (1/(1+(√(cotu))))du=∫_(π/6) ^(π/3) ((√(tanu))/(1+(√(tanu))))du  =∫_(π/6) ^(π/3) ((√(tanx))/(1+(√(tanx))))dx      ...(2)  add (1) and (2)  2I=∫_(π/6) ^(π/3) 1dx=(π/6)⇒I=(π/(12))

I=π/6π/311+tanxdx....(1)substituteu=π2xdu=dxx=π6u=π3x=π3u=π2I=π/3π/611+cotudu=π/6π/311+cotudu=π/6π/3tanu1+tanudu=π/6π/3tanx1+tanxdx...(2)add(1)and(2)2I=π/6π/31dx=π6I=π12

Commented by MathematicalUser2357 last updated on 26/Dec/24

Thanks��Equation editor owner

Answered by Simurdiera last updated on 20/Dec/24

Q.6     Area = πa^2

Q.6Area=πa2

Answered by Tinku Tara last updated on 20/Dec/24

Q4  put tan^(−1) x=u

Q4puttan1x=u

Answered by TonyCWX08 last updated on 21/Dec/24

Q7.  Area=πab

Q7.Area=πab

Terms of Service

Privacy Policy

Contact: info@tinkutara.com