Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 217228 by Tawa11 last updated on 06/Mar/25

Answered by mr W last updated on 06/Mar/25

I=((mr^2 )/2)  KE=((Iω^2 )/2)+((m(rω)^2 )/2)=((Iω^2 )/2)+Iω^2 =((3Iω^2 )/2)

I=mr22KE=Iω22+m(rω)22=Iω22+Iω2=3Iω22

Commented by Tawa11 last updated on 06/Mar/25

Thanks sir. I appreciate.

Thankssir.Iappreciate.

Answered by Wuji last updated on 06/Mar/25

v=ωR  K_(trans) =(1/2)Mv^2 =(1/2)M(ωR)^2   K_(rot) =(1/2)Iω^2   K_(total) =K_(trans) +K_(rot)  =(1/2)M(ωR)^2 +(1/2)Iω^2   K_(total) =(1/2)(Mω^2 R^2 +Iω^2 )=(1/2)ω^2 (MR^2 +I)  moment of inertial about its central axis  I=(1/2)MR^2   ⇒MR^2 =2I  K_(total) =(1/2)ω^2 (2I+I)=(1/2)ω^2 (3I)  K_(total) =(3/2)Iω^2 ✓

v=ωRKtrans=12Mv2=12M(ωR)2Krot=12Iω2Ktotal=Ktrans+Krot=12M(ωR)2+12Iω2Ktotal=12(Mω2R2+Iω2)=12ω2(MR2+I)momentofinertialaboutitscentralaxisI=12MR2MR2=2IKtotal=12ω2(2I+I)=12ω2(3I)Ktotal=32Iω2

Commented by Tawa11 last updated on 06/Mar/25

Thanks sir. I appreciate.

Thankssir.Iappreciate.

Answered by MrGaster last updated on 07/Mar/25

K.E.=(1/2)Iω^2 +(1/2)mv^2   v=ωR  K.E.=(1/2)Iω^2 +(1/2)m(ωR)^2   K.E.=(1/2)Iω^2 +(1/2)mR^2 ω^2   ∵I=(1/2)mR^2 for a solid cylimder  K.E.=(1/2)ω^2 ((1/2)mR^2 +mR^2 )  K.E.=(1/2)ω^2 ((3/2)mR^2 )  K.E.=(3/4) mR^2 ω^2   K.E.=(3/2)((1/2)mR^2 ω^2 )  K.E.= determinant ((((3/2)Iω^2 )))

K.E.=12Iω2+12mv2v=ωRK.E.=12Iω2+12m(ωR)2K.E.=12Iω2+12mR2ω2I=12mR2forasolidcylimderK.E.=12ω2(12mR2+mR2)K.E.=12ω2(32mR2)K.E.=34mR2ω2K.E.=32(12mR2ω2)K.E.=32Iω2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com