Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 217300 by peter frank last updated on 09/Mar/25

Answered by Marzuk last updated on 09/Mar/25

       (d^2 y/dx^2 ) − 2a(dy/dx) + (a^2  + b^2 )y = 0  or,((dy′)/dx) − 2a(d/dx) [e^(ax) sin(bx) ] + a^2 y+b^2 y =0  Here : ((dy′)/dx) = (d/dx)((d/dx) [ e^(ax) sin(bx) ])    (d/dx) [ e^(ax) sin(bx) ] = ae^(ax) sin(bx)+ e^(ax) b cos(bx)  ∴ (d/dx) [ ae^(ax) sin(bx) + e^(ax) b cos(bx)]  = (d/dx)[ ae^(ax) sin(bx) ] + (d/dx) [ e^(ax) b cos(bx) ]  = a^2 e^(ax) sin(bx)+ ae^(ax) b cos(bx) + ae^(ax) b cos(bx)−b^2 sin(bx)  or, a^2 e^(ax) sin(bx)+ae^(ax) b cos(bx) + ae^(ax) b cos(bx) − b^2  sin(bx)−2a^2 e^(ax) sin(bx) − 2ae^(ax) b cos(bx)+ a^2 e^(ax) sin(bx) + b^2 e^(ax) sin(bx) = 0  or,a^2 e^(ax) sin(bx) + a^2 e^(ax) sin(bx) − 2a^2 e^(ax) sin(bx) + ae^(ax) b cos(bx) + ae^(ax) b cos(bx) − 2ae^(ax) b cos(bx) + b^2 e^(ax)  sin(bx) + b^2 e^(ax)  sin(bx) − 2b^2 e^(ax)  sin(bx) = 0  or, 0 + 0 + 0 = 0  or, 0 = 0   ∴ (d^2 y/dx^2 ) − 2a(dy/dx) + (a^2  + b^2  )y = 0

d2ydx22adydx+(a2+b2)y=0or,dydx2addx[eaxsin(bx)]+a2y+b2y=0Here:dydx=ddx(ddx[eaxsin(bx)])ddx[eaxsin(bx)]=aeaxsin(bx)+eaxbcos(bx)ddx[aeaxsin(bx)+eaxbcos(bx)]=ddx[aeaxsin(bx)]+ddx[eaxbcos(bx)]=a2eaxsin(bx)+aeaxbcos(bx)+aeaxbcos(bx)b2sin(bx)or,a2eaxsin(bx)+aeaxbcos(bx)+aeaxbcos(bx)b2sin(bx)2a2eaxsin(bx)2aeaxbcos(bx)+a2eaxsin(bx)+b2eaxsin(bx)=0or,a2eaxsin(bx)+a2eaxsin(bx)2a2eaxsin(bx)+aeaxbcos(bx)+aeaxbcos(bx)2aeaxbcos(bx)+b2eaxsin(bx)+b2eaxsin(bx)2b2eaxsin(bx)=0or,0+0+0=0or,0=0d2ydx22adydx+(a2+b2)y=0

Answered by som(math1967) last updated on 10/Mar/25

 y=e^(ax) sinbx   y_1 =ae^(ax) sinbx+be^(ax) cosbx   y_1 =ay+be^(ax) cosbx  [y=e^(ax) sinbx[   y_2 =ay_1 +abe^(ax) cosbx−b^2 e^(ax) sinbx   y_2 =ay_1 +a(y_1 −ay) −b^2 y  [ be^(ax) cosbx=y_1 −ay]   y_2 −2ay_1 +(a^2 +b^2 )y=0   [y_1 =(dy/dx)     y_2 =(d^2 y/dx^2 )]

y=eaxsinbxy1=aeaxsinbx+beaxcosbxy1=ay+beaxcosbx[y=eaxsinbx[y2=ay1+abeaxcosbxb2eaxsinbxy2=ay1+a(y1ay)b2y[beaxcosbx=y1ay]y22ay1+(a2+b2)y=0[y1=dydxy2=d2ydx2]

Terms of Service

Privacy Policy

Contact: info@tinkutara.com