All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 217300 by peter frank last updated on 09/Mar/25
Answered by Marzuk last updated on 09/Mar/25
d2ydx2−2adydx+(a2+b2)y=0or,dy′dx−2addx[eaxsin(bx)]+a2y+b2y=0Here:dy′dx=ddx(ddx[eaxsin(bx)])ddx[eaxsin(bx)]=aeaxsin(bx)+eaxbcos(bx)∴ddx[aeaxsin(bx)+eaxbcos(bx)]=ddx[aeaxsin(bx)]+ddx[eaxbcos(bx)]=a2eaxsin(bx)+aeaxbcos(bx)+aeaxbcos(bx)−b2sin(bx)or,a2eaxsin(bx)+aeaxbcos(bx)+aeaxbcos(bx)−b2sin(bx)−2a2eaxsin(bx)−2aeaxbcos(bx)+a2eaxsin(bx)+b2eaxsin(bx)=0or,a2eaxsin(bx)+a2eaxsin(bx)−2a2eaxsin(bx)+aeaxbcos(bx)+aeaxbcos(bx)−2aeaxbcos(bx)+b2eaxsin(bx)+b2eaxsin(bx)−2b2eaxsin(bx)=0or,0+0+0=0or,0=0∴d2ydx2−2adydx+(a2+b2)y=0
Answered by som(math1967) last updated on 10/Mar/25
y=eaxsinbxy1=aeaxsinbx+beaxcosbxy1=ay+beaxcosbx[y=eaxsinbx[y2=ay1+abeaxcosbx−b2eaxsinbxy2=ay1+a(y1−ay)−b2y[beaxcosbx=y1−ay]y2−2ay1+(a2+b2)y=0[y1=dydxy2=d2ydx2]
Terms of Service
Privacy Policy
Contact: info@tinkutara.com