Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 217356 by SciMaths last updated on 11/Mar/25

Answered by profcedricjunior last updated on 11/Mar/25

i=∫_1 ^2 ∫_y ^y^2  ∫_0 ^(ln(y+z)) e^x dxdydz    =∫_1 ^2 ∫_y ^y^2  [e^x ]_0 ^(ln(y+z)) dydz    =∫_1 ^2 ∫_y ^y^2  (y+z−1)dydz=∫_1 ^2 [yz+(z^2 /2)−z]_y ^y^2  dy    =[(y^4 /4)+(y^4 /8)−(y^3 /3)−(y^3 /3)−(y^3 /6)+(y^2 /2)]_1 ^2      =[4+2−(8/3)−(8/3)−(8/6)+2−(1/4)−(1/8)+(1/3)+(1/3)+(1/6)−(1/2)     =8−((20)/3)−(3/8)+(5/6)−(1/2)=8−((35)/6)−(7/8)     =8−((280+42)/(48))=8−((322)/(48))=8−((161)/(24))

i=12yy20ln(y+z)exdxdydz=12yy2[ex]0ln(y+z)dydz=12yy2(y+z1)dydz=12[yz+z22z]yy2dy=[y44+y48y33y33y36+y22]12=[4+2838386+21418+13+13+1612=820338+5612=835678=8280+4248=832248=816124

Terms of Service

Privacy Policy

Contact: info@tinkutara.com