Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 217358 by mnjuly1970 last updated on 11/Mar/25

Answered by mr W last updated on 12/Mar/25

let Δ=area of triangle ΔABC  we have  Δ=((√(2(a^2 b^2 +b^2 c^2 +c^2 a^2 )−(a^4 +b^4 +c^4 )))/4)  Δ=((ca sin B)/2)=((ab sin C)/2)=((bc sin A)/2)    ((xc sin ω)/2)+((ya sin ω)/2)+((zb sin ω)/2)=Δ  ⇒(xc+ya+zb)sin ω=2Δ   ...(i)    y^2 =x^2 +c^2 −2xc cos ω  z^2 =y^2 +a^2 −2ya cos ω  x^2 =z^2 +b^2 −2zb cos ω  ⇒(xc+ya+zb)cos ω=((a^2 +b^2 +c^2 )/2)   ...(ii)  (i)/(ii):  ⇒tan ω=((4Δ)/(a^2 +b^2 +c^2 ))  sin ω=((4Δ)/( (√((4Δ)^2 +(a^2 +b^2 +c^2 )^2 ))))       =((4Δ)/( (√(2(a^2 b^2 +b^2 c^2 +c^2 a^2 )−(a^4 +b^4 +c^4 )+a^4 +b^4 +c^4 +2(a^2 b^2 +b^2 c^2 +c^2 a^2 )))))       =((2Δ)/( (√(a^2 b^2 +b^2 c^2 +c^2 a^2 ))))  ⇒((sin ω)/(2Δ))=(1/( (√(a^2 b^2 +b^2 c^2 +c^2 a^2 ))))    in ΔPAB we have  (y/(sin ω))=(c/(sin (ω+B−ω)))=(c/(sin B))=((c^2 a)/(ca sin B))=((c^2 a)/(2Δ))  ⇒y=((c^2 a sin ω)/(2Δ))=((c^2 a)/( (√(a^2 b^2 +b^2 c^2 +c^2 a^2 ))))  similarly  z=((a^2 b sin ω)/(2Δ))=((a^2 b)/( (√(a^2 b^2 +b^2 c^2 +c^2 a^2 ))))  x=((b^2 c sin ω)/(2Δ))=((b^2 c)/( (√(a^2 b^2 +b^2 c^2 +c^2 a^2 ))))  ⇒x+y+z=((a^2 b+b^2 c+c^2 a)/( (√(a^2 b^2 +b^2 c^2 +c^2 a^2 )))) ✓

letΔ=areaoftriangleΔABCwehaveΔ=2(a2b2+b2c2+c2a2)(a4+b4+c4)4Δ=casinB2=absinC2=bcsinA2xcsinω2+yasinω2+zbsinω2=Δ(xc+ya+zb)sinω=2Δ...(i)y2=x2+c22xccosωz2=y2+a22yacosωx2=z2+b22zbcosω(xc+ya+zb)cosω=a2+b2+c22...(ii)(i)/(ii):tanω=4Δa2+b2+c2sinω=4Δ(4Δ)2+(a2+b2+c2)2=4Δ2(a2b2+b2c2+c2a2)(a4+b4+c4)+a4+b4+c4+2(a2b2+b2c2+c2a2)=2Δa2b2+b2c2+c2a2sinω2Δ=1a2b2+b2c2+c2a2inΔPABwehaveysinω=csin(ω+Bω)=csinB=c2acasinB=c2a2Δy=c2asinω2Δ=c2aa2b2+b2c2+c2a2similarlyz=a2bsinω2Δ=a2ba2b2+b2c2+c2a2x=b2csinω2Δ=b2ca2b2+b2c2+c2a2x+y+z=a2b+b2c+c2aa2b2+b2c2+c2a2

Commented by mnjuly1970 last updated on 12/Mar/25

Terms of Service

Privacy Policy

Contact: info@tinkutara.com