All Questions Topic List
Geometry Questions
Previous in All Question Next in All Question
Previous in Geometry Next in Geometry
Question Number 217358 by mnjuly1970 last updated on 11/Mar/25
Answered by mr W last updated on 12/Mar/25
letΔ=areaoftriangleΔABCwehaveΔ=2(a2b2+b2c2+c2a2)−(a4+b4+c4)4Δ=casinB2=absinC2=bcsinA2xcsinω2+yasinω2+zbsinω2=Δ⇒(xc+ya+zb)sinω=2Δ...(i)y2=x2+c2−2xccosωz2=y2+a2−2yacosωx2=z2+b2−2zbcosω⇒(xc+ya+zb)cosω=a2+b2+c22...(ii)(i)/(ii):⇒tanω=4Δa2+b2+c2sinω=4Δ(4Δ)2+(a2+b2+c2)2=4Δ2(a2b2+b2c2+c2a2)−(a4+b4+c4)+a4+b4+c4+2(a2b2+b2c2+c2a2)=2Δa2b2+b2c2+c2a2⇒sinω2Δ=1a2b2+b2c2+c2a2inΔPABwehaveysinω=csin(ω+B−ω)=csinB=c2acasinB=c2a2Δ⇒y=c2asinω2Δ=c2aa2b2+b2c2+c2a2similarlyz=a2bsinω2Δ=a2ba2b2+b2c2+c2a2x=b2csinω2Δ=b2ca2b2+b2c2+c2a2⇒x+y+z=a2b+b2c+c2aa2b2+b2c2+c2a2✓
Commented by mnjuly1970 last updated on 12/Mar/25
Terms of Service
Privacy Policy
Contact: info@tinkutara.com