Question and Answers Forum

All Questions      Topic List

Logarithms Questions

Previous in All Question      Next in All Question      

Previous in Logarithms      Next in Logarithms      

Question Number 217691 by PaulDirac last updated on 18/Mar/25

Answered by mr W last updated on 19/Mar/25

let a=9^9^9    I=∫_0 ^π ln (ax)dx    =(1/a)∫_0 ^π ln (ax)d(ax)    =(1/a)∫_0 ^(aπ) ln t dt    =(1/a){[t ln t]_0 ^(aπ) −∫_0 ^(aπ) dt}    =(1/a)[t(ln t−1)]_0 ^(aπ)     =(1/a)×aπ(ln aπ−1)−(1/a)lim_(t→0)  t(ln t−1)    =π(ln aπ−1)−(1/a)lim_(t→0)  (ln t^t −t)     ^(∗))     =π(ln aπ−1)    =π[ln (9^9^9  π)−1] ✓    ^(∗))  Note:  lim_(x→0) x^x =1 ⇒lim_(x→0) (ln x^x )=0

leta=999I=0πln(ax)dx=1a0πln(ax)d(ax)=1a0aπlntdt=1a{[tlnt]0aπ0aπdt}=1a[t(lnt1)]0aπ=1a×aπ(lnaπ1)1alimt0t(lnt1)=π(lnaπ1)1alimt0(lnttt))=π(lnaπ1)=π[ln(999π)1])Note:limx0xx=1limx0(lnxx)=0

Commented by SdC355 last updated on 19/Mar/25

sorry, i was careless.

sorry,iwascareless.

Commented by mr W last updated on 19/Mar/25

the question is clearly  log_e  9^9^9  x=log_e  (9^9^9  x)=ln (9^9^9  x).  nothing else is meant.

thequestionisclearlyloge999x=loge(999x)=ln(999x).nothingelseismeant.

Commented by mr W last updated on 19/Mar/25

it′s alright! no need for being sorry!

itsalright!noneedforbeingsorry!

Commented by SdC355 last updated on 19/Mar/25

???  was that integral not ln_(′′e^9^9^9   ′′) (z) ???  ln(e^9^9^9   z)??

???Prime causes double exponent: use braces to clarifyln(e999z)??

Answered by Wuji last updated on 19/Mar/25

∫_0 ^π log_e (9^9^9  )xdx  log_e (9^9^9  )∫_0 ^π xdx =log_e (9^9^9  )(x^2 /2)∣_0 ^π    =log_e (9^9^9  )(π^2 /2)  =9^9 log_e (9)(π^2 /2)

π0loge(999)xdxloge(999)π0xdx=loge(999)x220π=loge(999)π22=99loge(9)π22

Commented by mr W last updated on 20/Mar/25

i think nobody will really mean  with ∫sin 2xdx as   ∫(sin 2) xdx=(sin 2)∫xdx

ithinknobodywillreallymeanwithsin2xdxas(sin2)xdx=(sin2)xdx

Commented by Wuji last updated on 22/Mar/25

my apologies, sir. i thought the variable  is not attached with the constant.

myapologies,sir.ithoughtthevariableisnotattachedwiththeconstant.

Answered by Wuji last updated on 22/Mar/25

Thanks to Mr. W for pointing out my errors  ∫_0 ^π log_e (9^9^9  x)dx  =∫_0 ^π ln(9^9^9  x)dx  I(a)=∫_0 ^π ln(ax)dx    {a=9^9^9  }  (d/da)I(a)=∫_0 ^π (d/da)ln(ax)dx=∫_0 ^π (1/(ax))xdx=∫_0 ^π (1/a)dx=(π/a)  I(a)=∫_0 ^π (π/a)da =πln(a)+C  I(1)=∫_0 ^π ln(x)dx  =xln(x)−x+C  I(1)=[πln(π)−π]−lim_(x→0^+ ) (xln(x)−x)=πln(π)−π  I(a)=πln(a)+πln(π)−π=π(ln(aπ)−1)  a=9^9^9    I=π[ln(9^9^9  π)−1] =π(9^9 ln(9π)−1)

ThankstoMr.Wforpointingoutmyerrors0πloge(999x)dx=0πln(999x)dxI(a)=0πln(ax)dx{a=999}ddaI(a)=0πddaln(ax)dx=0π1axxdx=0π1adx=πaI(a)=0ππada=πln(a)+CI(1)=0πln(x)dx=xln(x)x+CI(1)=[πln(π)π]limx0+(xln(x)x)=πln(π)πI(a)=πln(a)+πln(π)π=π(ln(aπ)1)a=999I=π[ln(999π)1]=π(99ln(9π)1)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com