Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 218262 by hardmath last updated on 03/Apr/25

Commented by hardmath last updated on 03/Apr/25

ABCD - Rectangular  AK ⊥ BM  S_(△AKB)  = S_(△BMC)  = S_(AKMD)   DM = a  Prove that:   BC = a (√5)

ABCDRectangularAKBMSAKB=SBMC=SAKMDDM=aProvethat:BC=a5

Answered by mr W last updated on 04/Apr/25

say MC=x, BC=y  say S=area of ABCD  S=(a+x)y  ((xy)/2)=(S/3)=(((a+x)y)/3)  ⇒x=2a  S_(AKB) =S_(MCB)    ⇒AB=MB  ⇒a+x=(√(x^2 +y^2 ))  ⇒a+2a=(√(4a^2 +y^2 ))  ⇒y=(√5)a ✓

sayMC=x,BC=ysayS=areaofABCDS=(a+x)yxy2=S3=(a+x)y3x=2aSAKB=SMCBAB=MBa+x=x2+y2a+2a=4a2+y2y=5a

Commented by mehdee7396 last updated on 05/Apr/25

  thank you.i understand  ▶  ∠ABK=∠BMC   ◂

thankyou.iunderstandABK=BMC

Commented by hardmath last updated on 04/Apr/25

thankyou dear professor

thankyoudearprofessor

Commented by mehdee7396 last updated on 05/Apr/25

  ⇒? AB=MB

?AB=MB

Commented by hardmath last updated on 05/Apr/25

thank you dear professor

thankyoudearprofessor

Commented by mr W last updated on 05/Apr/25

Commented by mr W last updated on 05/Apr/25

if both triangles are similar, then  (a_1 /a_2 )=(b_1 /b_2 )=(c_1 /c_2 )  (S_1 /S_2 )=((a_1 /a_2 ))^2 =((b_1 /b_2 ))^2 =((c_1 /c_2 ))^2

ifbothtrianglesaresimilar,thena1a2=b1b2=c1c2S1S2=(a1a2)2=(b1b2)2=(c1c2)2

Commented by mr W last updated on 05/Apr/25

∠ABK=∠MBC  ⇒ΔABK∼ΔMBC  S_(ΔABK) =S_(ΔMBC)   ⇒AK=BC, KB=CM, AB=BM  note: if two similar triangles have  equal area, then they also have equal  side lengthes.

ABK=MBCΔABKΔMBCSΔABK=SΔMBCAK=BC,KB=CM,AB=BMnote:iftwosimilartriangleshaveequalarea,thentheyalsohaveequalsidelengthes.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com