Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 218349 by Hanuda354 last updated on 07/Apr/25

Answered by vnm last updated on 07/Apr/25

  ϕ(θ)=θ−sin^(−1) ((sin θ)/5)  s(α)=(5/2)(5α−sinα)  S=s(ϕ((π/3)))−s(ϕ((π/2)))+((19π)/2)=    24.174737721...

φ(θ)=θsin1sinθ5s(α)=52(5αsinα)S=s(φ(π3))s(φ(π2))+19π2=24.174737721...

Commented by Hanuda354 last updated on 07/Apr/25

Thanks

Thanks

Answered by mr W last updated on 08/Apr/25

Commented by mr W last updated on 08/Apr/25

R^2 =ρ^2 +b^2 −2bρ cos ((π/2)+θ)  ρ^2 +2bρ sin θ−(R^2 −b^2 )=0  ρ=−b sin θ+(√(R^2 −b^2 cos^2  θ))  A_1 =(1/2)∫_0 ^θ ρ^2 dθ     =(1/2)∫_0 ^θ (R^2 −b^2 cos 2θ−2b sin θ(√(R^2 −b^2  cos^2  θ)) )dθ     =((R^2 θ)/2)−((b^2 sin 2θ)/4)+R^2 ∫_0 ^θ (√(1−(((b cos θ)/R))^2 )) d(((b cos θ)/R))     =((R^2 θ)/2)−((b^2 sin 2θ)/4)+(R^2 /2)[sin^(−1) ((b cos θ)/R)+((b cos θ)/R)(√(1−(((b cos θ)/R))^2 ))]_0 ^θ      =((R^2 θ)/2)−((b^2 sin 2θ)/4)−(R^2 /2)[sin^(−1) (b/R)−sin^(−1) ((b cos θ)/R)+(b/R)(√(1−(b^2 /R^2 )))−((b cos θ)/R)(√(1−(((b cos θ)/R))^2 ))]     =(R^2 /2)(θ−sin^(−1) (b/R)+sin^(−1) ((b cos θ)/R))−((b^2 sin 2θ)/4)−((bR)/2)[(√(1−(b^2 /R^2 )))−cos θ(√(1−(((b cos θ)/R))^2 ))]  with b=1, R=5, θ=(π/6)  A_1 =((25)/2)((π/6)−sin^(−1) (1/5)+sin^(−1) ((√3)/(10)))−((√3)/8)−(5/2)((√(1−(1/(25))))−((√3)/2)(√(1−(3/(100)))))       ≈5.670392    h^2 =a(b+R)=4×(1+5)=24  ⇒r=(h/2)=(√6)  A_(shade) =((πR^2 )/2)−((πr^2 )/2)−A_1      =((π×5^2 )/2)−((π×6)/2)−A_1      ≈24.174738

R2=ρ2+b22bρcos(π2+θ)ρ2+2bρsinθ(R2b2)=0ρ=bsinθ+R2b2cos2θA1=120θρ2dθ=120θ(R2b2cos2θ2bsinθR2b2cos2θ)dθ=R2θ2b2sin2θ4+R20θ1(bcosθR)2d(bcosθR)=R2θ2b2sin2θ4+R22[sin1bcosθR+bcosθR1(bcosθR)2]0θ=R2θ2b2sin2θ4R22[sin1bRsin1bcosθR+bR1b2R2bcosθR1(bcosθR)2]=R22(θsin1bR+sin1bcosθR)b2sin2θ4bR2[1b2R2cosθ1(bcosθR)2]withb=1,R=5,θ=π6A1=252(π6sin115+sin1310)3852(11253213100)5.670392h2=a(b+R)=4×(1+5)=24r=h2=6Ashade=πR22πr22A1=π×522π×62A124.174738

Commented by Hanuda354 last updated on 08/Apr/25

Nice!!! Thnks

Nice!!!Thnks

Answered by mr W last updated on 09/Apr/25

Commented by mr W last updated on 09/Apr/25

((sin (θ−ϕ))/b)=((sin θ)/R)  ⇒ϕ=θ−sin^(−1) ((b sin θ)/R)  A=((R^2 ϕ)/2)−((bR sin ϕ)/2)=(R^2 /2)(ϕ−((b sin ϕ)/R))  A=(R^2 /2)[θ−sin^(−1) ((b sin θ)/R)−(b/R) sin (θ−sin^(−1) ((b sin θ)/R))]  A_1 =A∣_(θ=(π/2)) −A∣_(θ=(π/3))        =(5^2 /2)[(π/2)−sin^(−1) (1/5)−(1/5) sin ((π/2)−sin^(−1) (1/5))]          −(5^2 /2)[(π/3)−sin^(−1) (( (√3))/(10))−(1/5) sin ((π/3)−sin^(−1) ((√3)/(10)))]       =(5^2 /2)[(π/6)−sin^(−1) (1/5)+sin^(−1) ((√3)/(10))−(1/5) cos  (sin^(−1) (1/5))+(1/5) sin ((π/3)−sin^(−1) ((√3)/(10)))]       ≈5.679392  A_(shade) =((π×5^2 )/2)−((π×((√6))^2 )/2)−A_1          ≈24.174738

sin(θφ)b=sinθRφ=θsin1bsinθRA=R2φ2bRsinφ2=R22(φbsinφR)A=R22[θsin1bsinθRbRsin(θsin1bsinθR)]A1=Aθ=π2Aθ=π3=522[π2sin11515sin(π2sin115)]522[π3sin131015sin(π3sin1310)]=522[π6sin115+sin131015cos(sin115)+15sin(π3sin1310)]5.679392Ashade=π×522π×(6)22A124.174738

Terms of Service

Privacy Policy

Contact: info@tinkutara.com