Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 218399 by Nicholas666 last updated on 09/Apr/25

Answered by MrGaster last updated on 10/Apr/25

 determinant (((f(n)=(n^2 /2))))when n is even  f(n)=(n^2 /2)  f(n)=((n^2 −τ(n))/2)  f(n)+f(f(n))=((n^2 −τ(n))/2)+(((((n^2 −τ(n))/2) )^2 −τ(((n^2 −τ(n))/2)))/2)  =((n^2 −τ(n))/2)+((n^4 −2n^2 τ(n)+τ(n)^2 −4τ(((n^2 −τ(n))/2)))/8)  does not hold  f(n)+f(f(n))=τ(n)n+τ(τ(n)n)∙τ(n)n=n^2   ⇒τ(n)(n+τ(τ(n)n)∙τ(n)n)=n^2   no solution   determinant (((f(n)=n^2 −τ(n)^2 )))  f(n)+f(f(n))=n^2 −τ(n)^2 +(n^2 −τ(n)^2 )^2 −τ(n^2 −τ(n)^2 )^2 =n^2   does not hold   determinant (((f(n)=(n^2 /(1+τ(n))))))  ⇒(n^2 /(1+τ(n)))+((((n^2 /(1+τ(n))))^2 )/(1+τ((n^2 /(1+τ(n))))))=n^2   does not hold   determinant (((f(n)=(n^2 /2) when τ(n)is even,f(n)=((n^2 −1)/2)when τ(n)is odd)))  verify n=2(τ=2even):f(2)=2,f(2)+f(2)=4=2^2   n=4(τ=3odd):f(4)=((16−1)/2)=7.5 not an integer   determinant (((f(n)= { (((n^2 /2) n evem)),((((n^2 −1)/2) n odd)) :})))  n=3:f(3)=4,f(4)=8⇒4+8=12≠9 error   determinant (((f(n)=(n^2 /2) ∀n∈Z^+ )))but only when n=2 holds  final solution must satisfy f(n)+f(f(n))=n^2  and f(n)is related to τ(n)   determinant (((f(n)=n^2 −τ(n))))partially holds e.g.,n=2,f(2)=2,f(f(2))=2 ⇒2+2=4=2^2

f(n)=n22whennisevenf(n)=n22f(n)=n2τ(n)2f(n)+f(f(n))=n2τ(n)2+(n2τ(n)2)2τ(n2τ(n)2)2=n2τ(n)2+n42n2τ(n)+τ(n)24τ(n2τ(n)2)8doesnotholdf(n)+f(f(n))=τ(n)n+τ(τ(n)n)τ(n)n=n2τ(n)(n+τ(τ(n)n)τ(n)n)=n2nosolutionf(n)=n2τ(n)2f(n)+f(f(n))=n2τ(n)2+(n2τ(n)2)2τ(n2τ(n)2)2=n2doesnotholdf(n)=n21+τ(n)n21+τ(n)+(n21+τ(n))21+τ(n21+τ(n))=n2doesnotholdf(n)=n22whenτ(n)iseven,f(n)=n212whenτ(n)isoddverifyn=2(τ=2even):f(2)=2,f(2)+f(2)=4=22n=4(τ=3odd):f(4)=1612=7.5notanintegerf(n)={n22nevemn212noddn=3:f(3)=4,f(4)=84+8=129errorf(n)=n22nZ+butonlywhenn=2holdsfinalsolutionmustsatisfyf(n)+f(f(n))=n2andf(n)isrelatedtoτ(n)f(n)=n2τ(n)partiallyholdse.g.,n=2,f(2)=2,f(f(2))=22+2=4=22

Terms of Service

Privacy Policy

Contact: info@tinkutara.com