All Questions Topic List
Others Questions
Previous in All Question Next in All Question
Previous in Others Next in Others
Question Number 218399 by Nicholas666 last updated on 09/Apr/25
Answered by MrGaster last updated on 10/Apr/25
f(n)=n22whennisevenf(n)=n22f(n)=n2−τ(n)2f(n)+f(f(n))=n2−τ(n)2+(n2−τ(n)2)2−τ(n2−τ(n)2)2=n2−τ(n)2+n4−2n2τ(n)+τ(n)2−4τ(n2−τ(n)2)8doesnotholdf(n)+f(f(n))=τ(n)n+τ(τ(n)n)⋅τ(n)n=n2⇒τ(n)(n+τ(τ(n)n)⋅τ(n)n)=n2nosolutionf(n)=n2−τ(n)2f(n)+f(f(n))=n2−τ(n)2+(n2−τ(n)2)2−τ(n2−τ(n)2)2=n2doesnotholdf(n)=n21+τ(n)⇒n21+τ(n)+(n21+τ(n))21+τ(n21+τ(n))=n2doesnotholdf(n)=n22whenτ(n)iseven,f(n)=n2−12whenτ(n)isoddverifyn=2(τ=2even):f(2)=2,f(2)+f(2)=4=22n=4(τ=3odd):f(4)=16−12=7.5notanintegerf(n)={n22nevemn2−12noddn=3:f(3)=4,f(4)=8⇒4+8=12≠9errorf(n)=n22∀n∈Z+butonlywhenn=2holdsfinalsolutionmustsatisfyf(n)+f(f(n))=n2andf(n)isrelatedtoτ(n)f(n)=n2−τ(n)partiallyholdse.g.,n=2,f(2)=2,f(f(2))=2⇒2+2=4=22
Terms of Service
Privacy Policy
Contact: info@tinkutara.com