Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 218491 by Spillover last updated on 10/Apr/25

Commented by Nicholas666 last updated on 10/Apr/25

R=(√((116)/π))

R=116π

Answered by Nicholas666 last updated on 11/Apr/25

a⇒a^2 +a^2 =(2R)^2 ⇒a^2 =2R^2   S_1 =a^2 =2R^2   4S=πR^2 −S_1 =πR^2 −2R^2 =R^2 (π−2)  4S+S_1 =116  R^2 (π−2+2)=116  R^2 π=116  R^2 =116/π =(√((116)/π))=6.076

aa2+a2=(2R)2a2=2R2S1=a2=2R24S=πR2S1=πR22R2=R2(π2)4S+S1=116R2(π2+2)=116R2π=116R2=116/π=116π=6.076

Answered by mr W last updated on 11/Apr/25

S_1 =((√2)R)^2 =2R^2   S=a×a  R^2 =((R/( (√2)))+a)^2 +((a/2))^2   5a^2 +4(√2)Ra−2R^2 =0  ⇒a=(((√2)R)/5)  ⇒S=a^2 =((2R^2 )/(25))  4S+S_1 =116  4×((2R^2 )/(25))+2R^2 =116  ⇒R=5(√2) ✓

S1=(2R)2=2R2S=a×aR2=(R2+a)2+(a2)25a2+42Ra2R2=0a=2R5S=a2=2R2254S+S1=1164×2R225+2R2=116R=52

Commented by Spillover last updated on 11/Apr/25

correct

correct

Answered by Spillover last updated on 11/Apr/25

Answered by Spillover last updated on 11/Apr/25

Answered by Spillover last updated on 11/Apr/25

Terms of Service

Privacy Policy

Contact: info@tinkutara.com