Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 218494 by Spillover last updated on 10/Apr/25

Answered by vnm last updated on 10/Apr/25

(R/( (√(R^2 +(2R)^2 ))))=(r/( (√(R^2 +(2R)^2 ))−(R+r)))  (1/( (√5)))=(r/( R(√5)−R−r))=((r/R)/( (√5)−1−r/R))  (√5)=(((√5)−1)/(r/R))−1  (r/R)=(((√5)−1)/( (√5)+1))=((6−2(√5))/4)=((3−(√5))/2)  A=(1/2)(2R)^2 tan((π/2)−2tan^(−1) (1/2))=  ((2R^2 )/(tan(2tan^(−1) (1/2))))=((3R^2 )/2)

RR2+(2R)2=rR2+(2R)2(R+r)15=rR5Rr=r/R51r/R5=51r/R1rR=515+1=6254=352A=12(2R)2tan(π22tan112)=2R2tan(2tan112)=3R22

Commented by Spillover last updated on 11/Apr/25

correct

correct

Answered by mr W last updated on 10/Apr/25

Commented by mr W last updated on 10/Apr/25

((R−r)/( (√((R+r)^2 −(R−r)^2 ))))=(R/(2R))  (((R−r)^2 )/( 4Rr))=(1/4)  r^2 −3Rr+R^2 =0  ⇒(r/R)=((3−(√(3^2 −4)))/2)=((3−(√5))/2) ✓

Rr(R+r)2(Rr)2=R2R(Rr)24Rr=14r23Rr+R2=0rR=33242=352

Answered by Spillover last updated on 11/Apr/25

Answered by Spillover last updated on 11/Apr/25

Terms of Service

Privacy Policy

Contact: info@tinkutara.com