All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 218560 by MrGaster last updated on 12/Apr/25
Commented by MrGaster last updated on 12/Apr/25
J0(a1−u2)=∑∞n=0(−1)na2n(n!)222n(1−u2)n⇒∑∞m=0(−1)na2n(n!)222n∫cosα1(1−u2)n(1+u)eiludu=∑∞n=0(−1)ma2n(n!)222n∫cosα1(1−u)n(1+u)u+1eiduduHandleinternalintegration:∫cosα1(1−u)n(1+u)n+1eidudu=∑∞k=0(ib)kk!∫cosα1(1−u)n(1+u)n+1ukdu=∑∞k=0(ib)kk!∫cosα1(1−u)n∑n+1m=0Cn+1muk+mdu=∑∞λ=0∑n+1m=0Cn+1m(ib)kk!∫cosα1(1−u)nuk+mdu=∑∞k=0∑n+1m=0Cn+1m(ib)kk![B(k+m+1,n+1)−B(cosα;k+m+1,n+1)]=∑∞k=0∑n+1m=0Cn+1m(−ib)kk!(1−cosα)k+m+n+1k+m+n+12F1(−n,k+m+1;k+m+n+2;1−cosα)Backtotheoriginalformula..……Quadrupleseries.∑∞n=0∑∞k=0∑n+1m=0(−1)na2n(n!)222n(−ib)kk!(1−cosα)k+m+n+1k+m+n+1Cn+1m2F1(−n,k+m+1;k+m+n+2;1−cosα)………IdontknowhowtheeconvrgenceisbutIdonttwantosimplify.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com