Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 218560 by MrGaster last updated on 12/Apr/25

Commented by MrGaster last updated on 12/Apr/25

J_0 (a(√(1−u^2 )))=Σ_(n=0) ^∞ (((−1)^n a^(2n) )/((n!)^2 2^(2n) ))(1−u^2 )^n   ⇒Σ_(m=0) ^∞ (((−1)^n a^(2n) )/((n!)^2 2^(2n) ))∫_(cos α) ^1 (1−u^2 )^n (1+u)e^(ilu) du  =Σ_(n=0) ^∞ (((−1)^m a^(2n) )/((n!)^2 2^(2n) ))∫_(cos α) ^1 (1−u)^n (1+u)^(u+1) e^(idu) du  Handle internal integration:  ∫_(cos α) ^1 (1−u)^n (1+u)^(n+1) e^(idu) du  =Σ_(k=0) ^∞ (((ib)^k )/(k!))∫_(cos α) ^1 (1−u)^n (1+u)^(n+1) u^k du  =Σ_(k=0) ^∞ (((ib)^k )/(k!))∫_(cos α) ^1 (1−u)^n Σ_(m=0) ^(n+1) C_(n+1) ^m u^(k+m) du  =Σ_(λ=0) ^∞ Σ_(m=0) ^(n+1) C_(n+1) ^m (((ib)^k )/(k!))∫_(cos α) ^1 (1−u)^n u^(k+m) du  =Σ_(k=0) ^∞ Σ_(m=0) ^(n+1) C_(n+1) ^m (((ib)^k )/(k!))[B(k+m+1,n+1)−B(cos α;k+m+1,n+1)]  =Σ_(k=0) ^∞ Σ_(m=0) ^(n+1) C_(n+1) ^m (((−ib)^k )/(k!)) (((1−cos α)^(k+m+n+1) )/(k+m+n+1))   _2 F_1 (−n,k+m+1;k+m+n+2;1−cos α)  Back to the original formula.  .…… Quadruple series.   determinant (((Σ_(n=0) ^∞ Σ_(k=0) ^∞ Σ_(m=0) ^(n+1) (((−1)^n a^(2n) )/((n!)^2 2^(2n) )) (((−ib)^k )/(k!)) (((1−cos α)^(k+m+n+1) )/(k+m+n+1))C_(n+1) ^m )),(( _2 F_1 (−n,k+m+1;k+m+n+2;1−cos α))))  ……… I dont know how thee  convrgence is but I dontt  wan to simplify.

J0(a1u2)=n=0(1)na2n(n!)222n(1u2)nm=0(1)na2n(n!)222ncosα1(1u2)n(1+u)eiludu=n=0(1)ma2n(n!)222ncosα1(1u)n(1+u)u+1eiduduHandleinternalintegration:cosα1(1u)n(1+u)n+1eidudu=k=0(ib)kk!cosα1(1u)n(1+u)n+1ukdu=k=0(ib)kk!cosα1(1u)nn+1m=0Cn+1muk+mdu=λ=0n+1m=0Cn+1m(ib)kk!cosα1(1u)nuk+mdu=k=0n+1m=0Cn+1m(ib)kk![B(k+m+1,n+1)B(cosα;k+m+1,n+1)]=k=0n+1m=0Cn+1m(ib)kk!(1cosα)k+m+n+1k+m+n+12F1(n,k+m+1;k+m+n+2;1cosα)Backtotheoriginalformula..Quadrupleseries.n=0k=0n+1m=0(1)na2n(n!)222n(ib)kk!(1cosα)k+m+n+1k+m+n+1Cn+1m2F1(n,k+m+1;k+m+n+2;1cosα)IdontknowhowtheeconvrgenceisbutIdonttwantosimplify.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com