Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 218636 by hardmath last updated on 13/Apr/25

Answered by vnm last updated on 14/Apr/25

let   a_k =(1/(3k−1))+(1/(3k−2))−(2/(3k))  b_k =((4k)/(4k+1))−((4(k−1))/(4(k−1)+1))  if  ∀k≥1 a_k >b_k  then  ∀n≥1 Σ_(k=1) ^n a_k >Σ_(k=1) ^n b_k =((4n)/(4n+1))  a_k =((9k−4)/(3(3k−2)(3k−1)k))  b_k =(4/((4k+1)(4k−3)))  a_k −b_k =((9k−4)/(3(3k−2)(3k−1)k))−(4/((4k+1)(4k−3)))=  ((36k^3 −28k^2 −19k+12)/(3k(3k−2)(3k−1)(4k+1)(4k−3)))  36k^3 −28k^2 −19k+12=[2k=m]=  (1/2)(9m^3 −14m^2 −19m+24)=  (1/2)(m−1)(9m^2 −5m−24)=0  m_1 =1,  m_(2,3) =((5±(√(889)))/(18))  ((5+(√(889)))/(18))<((5+30)/(18))<2⇒∀k≥1 a_k −b_k >0

letak=13k1+13k223kbk=4k4k+14(k1)4(k1)+1ifk1ak>bkthenn1nk=1ak>nk=1bk=4n4n+1ak=9k43(3k2)(3k1)kbk=4(4k+1)(4k3)akbk=9k43(3k2)(3k1)k4(4k+1)(4k3)=36k328k219k+123k(3k2)(3k1)(4k+1)(4k3)36k328k219k+12=[2k=m]=12(9m314m219m+24)=12(m1)(9m25m24)=0m1=1,m2,3=5±889185+88918<5+3018<2k1akbk>0

Commented by hardmath last updated on 17/Apr/25

thankyou dearprofessor

thankyoudearprofessor

Terms of Service

Privacy Policy

Contact: info@tinkutara.com