Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 218658 by Nicholas666 last updated on 14/Apr/25

Answered by Nicholas666 last updated on 14/Apr/25

Commented by A5T last updated on 14/Apr/25

x≤3 and y≥1 does not imply xy≤3  In fact, xy is unbounded given those conditions.    So, if we take x=Σ_(cyc) ab ≤3 and y=Σ_(cyc) ((1/(1+a+b)))≥1,  this does not imply (Σ_(cyc) ab)(Σ_(cyc) (1/(1+a+b)))≥3

x3andy1doesnotimplyxy3Infact,xyisunboundedgiventhoseconditions.So,ifwetakex=cycab3andy=cyc(11+a+b)1,thisdoesnotimply(cycab)(cyc11+a+b)3

Answered by A5T last updated on 14/Apr/25

4−c=1+a+b; 4−b=1+a+c; 4−a=1+b+c  1+a+b≥3((ab))^(1/3) ⇒((ab)/(1+a+b))≤((ab)/(3((ab))^(1/3) ))=(1/3)(ab)^(2/3)   ⇒Σ(√((ab)/(1+a+b)))≤((√3)/3)Σ(ab)^(1/3)   But [((Σ(ab)^(1/3) )/3)]^3 ≤((Σ(ab))/3)=((ab+bc+ca)/3)≤(((a+b+c)^2 )/9)=1  ⇒Σ(ab)^(1/3) ≤3  ⇒Σ(√((ab)/(1+a+b)))≤((√3)/3)×3=(√3)  Equality when a=b=c=1

4c=1+a+b;4b=1+a+c;4a=1+b+c1+a+b3ab3ab1+a+bab3ab3=13(ab)23Σab1+a+b33Σ(ab)13But[Σ(ab)133]3Σ(ab)3=ab+bc+ca3(a+b+c)29=1Σ(ab)133Σab1+a+b33×3=3Equalitywhena=b=c=1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com