All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 218674 by Spillover last updated on 14/Apr/25
Answered by Nicholas666 last updated on 14/Apr/25
∫01(2x2−2x48+2x2−x4)2+x21−x2dxsolution;∫012x2(1−x2)9−(1−x2)22+x21−x2dx=∫012x21−x22+x29−(1−x2)2dxsub;1−x2−y2so−2xdx=2ydyanddx=−y1−y2dy;0⩽x⩽1;1⩾y⩾0∫102(1−y2)y29−y42+(1−y2)y2(−y1−y2)dy=∫012(1−y2)y29−y43−y2yy1−y2dy=∫012y21−y2(3−y2)(3+y2)dy=∫012y23+y2dysuby=3tanϕ,dy=3sec2ϕdϕ;0⩽ϕ⩽π/6∫0π/62(3tan2ϕ3+3tan2ϕ3sec2ϕdϕ=∫0π/66tan2ϕ3secϕ3sec2ϕdϕ=6∫0π/6tan2ϕsecϕdϕ=6∫0π/6(sec2ϕ−1)secϕdϕ=6∫0π/6(sec3ϕ−secϕ)dϕ=6[12(secϕtanϕ+ln∣secϕ+tanϕ∣)−ln∣secϕ+tanϕ∣]0π/6=3[secϕtanϕ−ln∣secϕ+tanϕ∣]0π/6=3[(2313−ln∣23+13∣)−(1.0−ln∣1+0∣)]=3[23−ln(33)−(0−0)]=3[23−ln(3)]=2.3ln(3)=2−32ln3✓
Answered by Spillover last updated on 14/Apr/25
Terms of Service
Privacy Policy
Contact: info@tinkutara.com