Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 218674 by Spillover last updated on 14/Apr/25

Answered by Nicholas666 last updated on 14/Apr/25

 ∫_0 ^1 (((2x^2 −2x^4 )/( (√(8+2x^2 −x^4  )))))(√((2+x^2 )/(1−x^2 )))dx  solution;   ∫_0 ^1  ((2x^2 (1−x^2 ))/( (√(9−(1−x^2 )^2 )))) (√((2+x^2 )/(1−x^2 ))) dx= ∫_0 ^1 ((2x^2 (√(1−x^2 )) (√(2+x^2 )))/( (√(9−(1−x^2 )^2  )))) dx        sub;1−x^2 −y^2  so −2xdx=2ydy and dx=((−y)/(1−y^2 ))dy; 0≤x≤1;1≥y≥0       ∫_1 ^0 ((2(1−y^2 )y^2 )/( (√(9−y^4 )))) (√((2+(1−y^2 ))/y^2 ))(−(y/( (√(1−y^2 )))))dy    =∫_0 ^1 ((2(1−y^2 )y^2 )/( (√(9−y^4 )))) ((√(3−y^2 ))/y) (y/( (√(1−y^2 ))))dy  =∫_0 ^1 ((2y^2 (√(1−y^2 )))/( (√((3−y^2 )(3+y^2 ))))) dy =∫_0 ^1 ((2y^2 )/( (√(3+y^2 ))))dy       sub y=(√3) tanφ,dy=(√3) sec^2 φdφ  ;0≤φ≤π/6  ∫_0 ^(π/6)  ((2(3tan^2 φ)/( (√(3+3tan^2 φ))))(√3)sec^2 φdφ  =∫_0 ^(π/6)  ((6tan^2 φ)/( (√3)secφ))(√3)sec^2 φdφ=6∫_0 ^(π/6)  tan^2 φsecφdφ    =6∫_0 ^(π/6) (sec^2 φ−1)secφdφ=6∫_(0 ) ^(π/6) (sec^3 φ−secφ)dφ  =6[(1/2)(secφtanφ+ln∣secφ+tanφ∣)−ln∣secφ+tanφ∣]_0 ^(π/6)   =3[secφtanφ−ln∣secφ+tanφ∣]_0 ^(π/6)   =3[((2/( (√3))) (1/( (√3))) − ln∣(2/( (√3)))+(1/( (√3)))∣)−(1.0−ln∣1+0∣)]  =3[(2/3) − ln ((3/( (√3))))−(0−0)]=3[(2/3)−ln((√3))]=2.3ln((√3))  =2−(3/2)ln3 ✓

01(2x22x48+2x2x4)2+x21x2dxsolution;012x2(1x2)9(1x2)22+x21x2dx=012x21x22+x29(1x2)2dxsub;1x2y2so2xdx=2ydyanddx=y1y2dy;0x1;1y0102(1y2)y29y42+(1y2)y2(y1y2)dy=012(1y2)y29y43y2yy1y2dy=012y21y2(3y2)(3+y2)dy=012y23+y2dysuby=3tanϕ,dy=3sec2ϕdϕ;0ϕπ/60π/62(3tan2ϕ3+3tan2ϕ3sec2ϕdϕ=0π/66tan2ϕ3secϕ3sec2ϕdϕ=60π/6tan2ϕsecϕdϕ=60π/6(sec2ϕ1)secϕdϕ=60π/6(sec3ϕsecϕ)dϕ=6[12(secϕtanϕ+lnsecϕ+tanϕ)lnsecϕ+tanϕ]0π/6=3[secϕtanϕlnsecϕ+tanϕ]0π/6=3[(2313ln23+13)(1.0ln1+0)]=3[23ln(33)(00)]=3[23ln(3)]=2.3ln(3)=232ln3

Answered by Spillover last updated on 14/Apr/25

Answered by Spillover last updated on 14/Apr/25

Terms of Service

Privacy Policy

Contact: info@tinkutara.com