Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 219384 by mnjuly1970 last updated on 23/Apr/25

Answered by SdC355 last updated on 24/Apr/25

∫   (dx/( (√x))) cos^3 (x)sin(x)=I  ∫   (dx/( x)) (√x)cos^3 (x)sin(x)=∫   (dx/x) (√x)cos^2 (x)cos(x)sin(x)  ∫  (dx/( 2x)) (√x)cos^2 (x)sin(2x)=∫  dx (e^(−xt) /x)(√x)cos^2 (x)sin(2x)  ∫_( t) ^( ∞)  dw L_w {(√x)cos^2 (x)sin(2x)}=  ((√π)/(32)) i∫_( t) ^( ∞)  dw {(2/( (√((w+2i)^3 ))))−(1/( (√((w−4i)^3 ))))+(1/( (√((w+4i)^3 ))))−(2/( (√((w−2i)^3 ))))}  =[−((√π)/(32)) i{(4/( (√(w+2i))))−(2/( (√(w−4i))))+(2/( (√(w+4i))))−(4/( (√(w−2i))))}]_(w=t) ^(w=∞)   ((√π)/(32)) i{(4/( (√(t+2i))))−(2/( (√(t−4i))))+(2/( (√(t+4i))))−(4/( (√(t−2i))))}  t=0  ((√π)/(32)) i{(4/( (√(2i))))−(2/( (√(−4i))))+(2/( (√(4i))))−(4/( (√(−2i))))}=((4+(√2))/(32))(√π)  ∴ α=((4+(√2))/(32))

dxxcos3(x)sin(x)=Idxxxcos3(x)sin(x)=dxxxcos2(x)cos(x)sin(x)dx2xxcos2(x)sin(2x)=dxextxxcos2(x)sin(2x)tdwLw{xcos2(x)sin(2x)}=π32itdw{2(w+2i)31(w4i)3+1(w+4i)32(w2i)3}=[π32i{4w+2i2w4i+2w+4i4w2i}]w=tw=π32i{4t+2i2t4i+2t+4i4t2i}t=0π32i{42i24i+24i42i}=4+232πα=4+232

Commented by mnjuly1970 last updated on 23/Apr/25

thanks alot bravo sir

thanksalotbravosir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com