All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 219384 by mnjuly1970 last updated on 23/Apr/25
Answered by SdC355 last updated on 24/Apr/25
∫dxxcos3(x)sin(x)=I∫dxxxcos3(x)sin(x)=∫dxxxcos2(x)cos(x)sin(x)∫dx2xxcos2(x)sin(2x)=∫dxe−xtxxcos2(x)sin(2x)∫t∞dwLw{xcos2(x)sin(2x)}=π32i∫t∞dw{2(w+2i)3−1(w−4i)3+1(w+4i)3−2(w−2i)3}=[−π32i{4w+2i−2w−4i+2w+4i−4w−2i}]w=tw=∞π32i{4t+2i−2t−4i+2t+4i−4t−2i}t=0π32i{42i−2−4i+24i−4−2i}=4+232π∴α=4+232
Commented by mnjuly1970 last updated on 23/Apr/25
thanksalotbravosir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com