Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 22165 by A1B1C1D1 last updated on 12/Oct/17

Answered by ajfour last updated on 13/Oct/17

let  (x/(1−x^2 )) =t    ⇒ x^2 =1−(x/t)  L=lim_(x→0) (((1+(x/t)−2(1−(t^2 /2)+(t^4 /(24))−....))/(2x^4 )))     =lim_(x→0) (((−1+(x/t)+t^2 −(t^4 /(12))+....)/(2x^4 )))     =lim_(x→0) (((−x^2 +t^2 (1−(t^2 /(12))+....))/(2x^4 )))     =lim_(x→0) (((−x^2 +(x^2 /((1−x^2 )^2 ))(1−(t^2 /(12))+...))/(2x^4 )))     =lim_(x→0) (((−1+(1/((1−x^2 )^2 ))(1−(t^2 /(12))+...))/(2x^2 )))     =lim_(x→0) (((−1+(1−x^2 )^(−2) (1−(t^2 /(12))+..))/(2x^2 )))     =lim_(x→0) (((−1+(1+2x^2 +..)(1−(t^2 /(12))+..))/(2x^2 )))    =lim_(x→0) (((−1+1+2x^2 −(t^2 /(12))+...)/(2x^2 )))    =lim_(x→0) (((2x^2 −(x^2 /(12(1−x^2 )^2 ))+...)/(2x^2 )))    =lim_(x→0) (((2−(1/(12(1−x^2 )^2 ))+...)/2))  L= ((2−(1/(12)))/2) =((23)/(24)) .

letx1x2=tx2=1xtL=limx0(1+xt2(1t22+t424....)2x4)=limx0(1+xt+t2t412+....2x4)=limx0(x2+t2(1t212+....)2x4)=limx0(x2+x2(1x2)2(1t212+...)2x4)=limx0(1+1(1x2)2(1t212+...)2x2)=limx0(1+(1x2)2(1t212+..)2x2)=limx0(1+(1+2x2+..)(1t212+..)2x2)=limx0(1+1+2x2t212+...2x2)=limx0(2x2x212(1x2)2+...2x2)=limx0(2112(1x2)2+...2)L=21122=2324.

Commented by A1B1C1D1 last updated on 13/Oct/17

Thank you.

Thankyou.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com