All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 22165 by A1B1C1D1 last updated on 12/Oct/17
Answered by ajfour last updated on 13/Oct/17
letx1−x2=t⇒x2=1−xtL=limx→0(1+xt−2(1−t22+t424−....)2x4)=limx→0(−1+xt+t2−t412+....2x4)=limx→0(−x2+t2(1−t212+....)2x4)=limx→0(−x2+x2(1−x2)2(1−t212+...)2x4)=limx→0(−1+1(1−x2)2(1−t212+...)2x2)=limx→0(−1+(1−x2)−2(1−t212+..)2x2)=limx→0(−1+(1+2x2+..)(1−t212+..)2x2)=limx→0(−1+1+2x2−t212+...2x2)=limx→0(2x2−x212(1−x2)2+...2x2)=limx→0(2−112(1−x2)2+...2)L=2−1122=2324.
Commented by A1B1C1D1 last updated on 13/Oct/17
Thankyou.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com