Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 22567 by mondodotto@gmail.com last updated on 20/Oct/17

Answered by Rasheed.Sindhi last updated on 20/Oct/17

840=2^3 .3.5.7  ∴ The numbers (of which 840 is lcm)  may have factors 2,3,5,7 all or some  of them.  Suppose the third number is (say y)    2^a .3^b .5^c .7^d  with the possibility that   some of a,b,c,d may equal to 0.  24=2^3 .3 , 42=2.3.7 , y=2^a .3^b .5^c .7^d   HCF   =2^(min(3,1,a)) .3^(min(1,b)) .5^0 .7^0 =2^1 .3^1   min(1,a)=1⇒a≥1..............(i)  min(1,b)=1⇒b≥1.............(ii)  LCM    =2^(max(3,1,a)) .3^(max(1,b)) .5^(max(0,c)) .7^(max(0,1,d))                         =2^3 .3.5.7  max(3,1,a)=3⇒a≤3..............(iii)  max(1,b)=1⇒b≤1..................(iv)  max(0,c)=1⇒c=1...................(v)  max(0,1,d)=1⇒d≤1.............(vi)  (i)&(iii): a≥1∧ a≤3⇒a=1,2,3  (ii)&(iv): b≥1∧b≤1⇒b=1  (v): c=1  (vi):d≤1^ ⇒d=0,1  Hence the third number is        2^(1,2,3) .3^1 .5^1 .7^(0,1)         2^1 .3.5.7^0  =30         2^1 .3.5.7^1 =210          2^2 .3.5.7^0 =60          2^2 .3.5.7^1 =420          2^3 .3.5.7^0 =120          2^3 .3.5.7^1 =840

840=23.3.5.7Thenumbers(ofwhich840islcm)mayhavefactors2,3,5,7allorsomeofthem.Supposethethirdnumberis(sayy)2a.3b.5c.7dwiththepossibilitythatsomeofa,b,c,dmayequalto0.24=23.3,42=2.3.7,y=2a.3b.5c.7dHCF=2min(3,1,a).3min(1,b).50.70=21.31min(1,a)=1a1..............(i)min(1,b)=1b1.............(ii)LCM=2max(3,1,a).3max(1,b).5max(0,c).7max(0,1,d)=23.3.5.7max(3,1,a)=3a3..............(iii)max(1,b)=1b1..................(iv)max(0,c)=1c=1...................(v)max(0,1,d)=1d1.............(vi)(i)&(iii):a1a3a=1,2,3(ii)&(iv):b1b1b=1(v):c=1(vi):d1d=0,1Hencethethirdnumberis21,2,3.31.51.70,121.3.5.70=3021.3.5.71=21022.3.5.70=6022.3.5.71=42023.3.5.70=12023.3.5.71=840

Answered by Rasheed.Sindhi last updated on 22/Oct/17

A simple approach  Let the third number is y.  ((24)/6)×((42)/6)×(y/6)×6=840  y=30   The lowest answer. Other answers  are such multiples of this which  assure the following  (i) lcm(24,42,y)=840    and  (ii) gcd(24,42,y)=6

AsimpleapproachLetthethirdnumberisy.246×426×y6×6=840y=30Thelowestanswer.Otheranswersaresuchmultiplesofthiswhichassurethefollowing(i)lcm(24,42,y)=840and(ii)gcd(24,42,y)=6

Answered by Rasheed.Sindhi last updated on 23/Oct/17

An other simple approach    lcm=840 and gcd=6  Let the third is  t   lcm(24  ,  42  ,  t)=840   lcm(2^3 .3  ,  2.3.7  ,  2^a .3^b .5^c .7^d )=2^3 .3^ .5.7    a≤3,b≤1,c=1,d≤1...............(i)     gcd(2^3 .3  ,  2.3.7  ,  2^a .3^b .5^c .7^d )=2.3      a≥1,b≥1,c≥0,d≥0...............(ii)     (i)&(ii):1≤a≤3 , b=1 , c=1 , d≤1  a=1,2,3 ; b=1 ; c=1 ; d≤1   t=2^(1,2,3) .3.5.7^(0,1)      =2^1 .3.5.7^0 =30     =2^1 .3.5.7^1 =210     =2^2 .3.5.7^0 =60     =2^2 .3.5.7^1 =420     =2^3 .3.5.7^0 =120     =2^3 .3.5.7^1 =840

Anothersimpleapproachlcm=840andgcd=6Letthethirdistlcm(24,42,t)=840lcm(23.3,2.3.7,2a.3b.5c.7d)=23.3.5.7a3,b1,c=1,d1...............(i)gcd(23.3,2.3.7,2a.3b.5c.7d)=2.3a1,b1,c0,d0...............(ii)(i)&(ii):1a3,b=1,c=1,d1a=1,2,3;b=1;c=1;d1t=21,2,3.3.5.70,1=21.3.5.70=30=21.3.5.71=210=22.3.5.70=60=22.3.5.71=420=23.3.5.70=120=23.3.5.71=840

Terms of Service

Privacy Policy

Contact: info@tinkutara.com