Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 23390 by ajfour last updated on 29/Oct/17

Commented by ajfour last updated on 31/Oct/17

(a)If released in this orientation  at origin, in what time can this  one spoke ring return back to  origin , assuming it starts rolling  on its own, and there are no net  energy losses, and it doesn′t fall  aside.

(a)Ifreleasedinthisorientationatorigin,inwhattimecanthisonespokeringreturnbacktoorigin,assumingitstartsrollingonitsown,andtherearenonetenergylosses,anditdoesntfallaside.

Commented by ajfour last updated on 31/Oct/17

(b) Also find the angular acceleration   α(θ) using Newton′s laws, that is,  without using energy methods.

(b)Alsofindtheangularaccelerationα(θ)usingNewtonslaws,thatis,withoutusingenergymethods.

Answered by mrW1 last updated on 30/Oct/17

Commented by mrW1 last updated on 31/Oct/17

Point 1=COM of ring M  Point 2=COM of rod (spoke) m  x_1 =Rθ  y_1 =R  x_2 =x_1 +(R/2) sin θ=(R/2)(2θ+sin θ)  y_2 =y_1 +(R/2) cos θ=(R/2)(2+cos θ)  ω=(dθ/dt)  v_(x1) =(dx_1 /dt)=R(dθ/dt)=Rω  v_(y1) =(dy_1 /dt)=0  v_(x2) =(dx_2 /dt)=(R/2)(2+cos θ)ω  v_(y2) =(dy_2 /dt)=−(R/2) sin θ ω    KE_1 =(1/2)M(v_(x1) ^2 +v_(y1) ^2 )+(1/2)I_1 ω^2   =(1/2)MR^2 ω^2 +(1/2)MR^2 ω^2 =MR^2 ω^2   KE_2 =(1/2)m(v_(x2) ^2 +v_(y2) ^2 )+(1/2)I_2 ω^2   =((mR^2 ω^2 )/8)(5+4cos θ)+((mR^2 ω^2 )/(24))  =((mR^2 ω^2 )/6)(4+3cos θ)  KE_1 +KE_2 =((mgR)/2)(1−cos θ)  MR^2 ω^2 +((mR^2 ω^2 )/6)(4+3cos θ)=((mgR)/2)(1−cos θ)  [6M+4m+3mcos θ]Rω^2 =3mg(1−cos θ)  ω^2 =(g/R)×((1−cos θ)/(((6M+4m)/(3m))+cos θ))=(g/R)×((2 sin^2  (θ/2))/(((6M+4m)/(3m))+1−2sin^2  (θ/2)))  ω^2 =(g/R)×((sin^2  (θ/2))/(((6M+7m)/(6m))−sin^2  (θ/2)))  ω^2 =(g/R)×((sin^2  (θ/2))/(a^2 −sin^2  (θ/2))), with a^2 =((6M+7m)/(6m))=(M/m)+(7/6)>1  ⇒ω=(√(g/R))×((sin (θ/2))/(√(a^2 −sin^2  (θ/2))))=(dθ/dt)  ⇒((√(a^2 −sin^2  (θ/2)))/(sin (θ/2))) dθ=(√(g/R)) dt  ⇒(√(g/R))∫_0 ^( t) dt=∫_0 ^( θ) ((√(a^2 −sin^2  (θ/2)))/(sin (θ/2))) dθ  ⇒t=(√(R/g))∫_0 ^( θ) ((√(a^2 −sin^2  (θ/2)))/(sin (θ/2))) dθ  t=2(√(R/g))∫_0 ^( θ) ((√(a^2 −sin^2  (θ/2)))/(sin (θ/2))) d(θ/2)  t=2(√(R/g))∫_0 ^( ϕ) ((√(a^2 −sin^2  ϕ))/(sin ϕ)) dϕ, with ϕ=(θ/2)    the time which is needed for a cycle is  T=2(√(R/g))∫_0 ^( π) ((√(a^2 −sin^2  ϕ))/(sin ϕ)) dϕ    F(ϕ)=∫^  ((√(a^2 −sin^2  ϕ))/(sin ϕ)) dϕ  =−(1/2)[a×ln ∣(((√(a^2 −sin^2  ϕ))+a ∣cos ϕ∣)/((√(a^2 −sin^2  ϕ))−a ∣cos ϕ∣))∣+ln ∣(((√(a^2 −sin^2  ϕ))−∣cos ϕ∣)/((√(a^2 −sin^2  ϕ))+∣cos ϕ∣))∣]+C  =−(1/2)[a×ln ∣(((√((a^2 −1)tan^2  ϕ+a^2 ))+a)/((√((a^2 −1)tan^2  ϕ+a^2 ))−a))∣+ln ∣(((√((a^2 −1)tan^2  ϕ+a^2 ))−1)/((√((a^2 −1)tan^2  ϕ+a^2 ))+1))∣]+C  ......  I can not continue due to problems with  this integral at ϕ=0 and ϕ=π.    what is wrong above ???

Point1=COMofringMPoint2=COMofrod(spoke)mx1=Rθy1=Rx2=x1+R2sinθ=R2(2θ+sinθ)y2=y1+R2cosθ=R2(2+cosθ)ω=dθdtvx1=dx1dt=Rdθdt=Rωvy1=dy1dt=0vx2=dx2dt=R2(2+cosθ)ωvy2=dy2dt=R2sinθωKE1=12M(vx12+vy12)+12I1ω2=12MR2ω2+12MR2ω2=MR2ω2KE2=12m(vx22+vy22)+12I2ω2=mR2ω28(5+4cosθ)+mR2ω224=mR2ω26(4+3cosθ)KE1+KE2=mgR2(1cosθ)MR2ω2+mR2ω26(4+3cosθ)=mgR2(1cosθ)[6M+4m+3mcosθ]Rω2=3mg(1cosθ)ω2=gR×1cosθ6M+4m3m+cosθ=gR×2sin2θ26M+4m3m+12sin2θ2ω2=gR×sin2θ26M+7m6msin2θ2ω2=gR×sin2θ2a2sin2θ2,witha2=6M+7m6m=Mm+76>1ω=gR×sinθ2a2sin2θ2=dθdta2sin2θ2sinθ2dθ=gRdtgR0tdt=0θa2sin2θ2sinθ2dθt=Rg0θa2sin2θ2sinθ2dθt=2Rg0θa2sin2θ2sinθ2dθ2t=2Rg0φa2sin2φsinφdφ,withφ=θ2thetimewhichisneededforacycleisT=2Rg0πa2sin2φsinφdφF(φ)=a2sin2φsinφdφ=12[a×lna2sin2φ+acosφa2sin2φacosφ+lna2sin2φcosφa2sin2φ+cosφ]+C=12[a×ln(a21)tan2φ+a2+a(a21)tan2φ+a2a+ln(a21)tan2φ+a21(a21)tan2φ+a2+1]+C......Icannotcontinueduetoproblemswiththisintegralatφ=0andφ=π.whatiswrongabove???

Commented by ajfour last updated on 31/Oct/17

take limit ϕ→0 , and ϕ→π  what was the tecqnique to  evaluate the Integral, Sir?

takelimitφ0,andφπwhatwasthetecqniquetoevaluatetheIntegral,Sir?

Commented by mrW1 last updated on 31/Oct/17

is there a simple solution?

isthereasimplesolution?

Commented by mrW1 last updated on 31/Oct/17

but there is no limit for ϕ→0 and π.  I am simply confused.

butthereisnolimitforφ0andπ.Iamsimplyconfused.

Commented by mrW1 last updated on 31/Oct/17

let us take a=2,  lim_(ϕ→0) ln ∣(((√(3+cos^2  ϕ))+2cos ϕ)/((√(3+cos^2  ϕ))−2cos ϕ))∣→∞  lim_(ϕ→π) ln ∣(((√(3+cos^2  ϕ))+2cos ϕ)/((√(3+cos^2  ϕ))−2cos ϕ))∣→∞

letustakea=2,limlnφ03+cos2φ+2cosφ3+cos2φ2cosφ∣→limlnφπ3+cos2φ+2cosφ3+cos2φ2cosφ∣→

Commented by ajfour last updated on 31/Oct/17

∫_0 ^(  π) ((√(a^2 −sin^2 ϕ))/(sin ϕ)) dϕ =2∫_0 ^(  π/2) ((√(a^2 −cos^2 ϕ))/(cos ϕ)) dϕ  what about this integral, Sir ?  but please explain how the  F(ϕ) is integrated, may be i can  see if the two logarithms merge.

0πa2sin2φsinφdφ=20π/2a2cos2φcosφdφwhataboutthisintegral,Sir?butpleaseexplainhowtheF(φ)isintegrated,maybeicanseeifthetwologarithmsmerge.

Commented by mrW1 last updated on 31/Oct/17

substitute u=tan x  ⇒∫((√(a^2 +(a^2 −1)u^2 ))/(u(u^2 +1)))du  substitute v=(√(a^2 +(a^2 −1)u^2 ))  ⇒(a^2 −1)∫(v^2 /((v^2 −1)(v^2 −a^2 ))) dv  ⇒a^2 ∫(dv/(v^2 −a^2 ))+(1/2)∫(dv/(v+1))−(1/2)∫(dv/(v−1))  =......

substituteu=tanxa2+(a21)u2u(u2+1)dusubstitutev=a2+(a21)u2(a21)v2(v21)(v2a2)dva2dvv2a2+12dvv+112dvv1=......

Commented by ajfour last updated on 31/Oct/17

Thank you immensely sir.

Thankyouimmenselysir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com