Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 23419 by mondodotto@gmail.com last updated on 30/Oct/17

Answered by $@ty@m last updated on 31/Oct/17

Solution (a)  LHS=cos A+cos B+cos C  =2cos ((A+B)/2)cos ((A−B)/2)+cos C  =2cos ((π−C)/2)cos ((A−B)/2)+cos C  =2sin (C/2)cos ((A−B)/2)−2sin^2 (C/2)+1  =2sin (C/2)(cos ((A−B)/2)−sin (C/2))+1  =2sin (C/2)(cos ((A−B)/2)−sin ((π−(A+B))/2))+1  =2sin (C/2)(cos ((A−B)/2)−cos ((A+B)/2))+1  =2sin (C/2).(2sin (B/2)sin (A/2))+1  =4sin (A/2)sin (B/2)sin (C/2)+1  =RHS  (Pl. recheck question)

Solution(a)LHS=cosA+cosB+cosC=2cosA+B2cosAB2+cosC=2cosπC2cosAB2+cosC=2sinC2cosAB22sin2C2+1=2sinC2(cosAB2sinC2)+1=2sinC2(cosAB2sinπ(A+B)2)+1=2sinC2(cosAB2cosA+B2)+1=2sinC2.(2sinB2sinA2)+1=4sinA2sinB2sinC2+1=RHS(Pl.recheckquestion)

Answered by $@ty@m last updated on 31/Oct/17

Solution (b)  LHS=cos 2A+cos 2B+cos 2C  =2cos (A+B)cos (A−B)+cos 2C  =2cos (π−C)cos (A−B)+cos 2C  =−2cos Ccos (A−B)+2cos^2 C−1  =−2cos C{cos (A−B)−cos C}−1  =−2cos C(2cosAcos B) −1  =−4cos CcosAcos B −1

Solution(b)LHS=cos2A+cos2B+cos2C=2cos(A+B)cos(AB)+cos2C=2cos(πC)cos(AB)+cos2C=2cosCcos(AB)+2cos2C1=2cosC{cos(AB)cosC}1=2cosC(2cosAcosB)1=4cosCcosAcosB1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com