Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 25887 by shivram198922@gmail.com last updated on 16/Dec/17

Answered by ajfour last updated on 16/Dec/17

∫_0 ^(  π) [cos (p−n)x−cos (p+n)x]dx  =((sin (p−n)π)/(p−n))−((sin (p+n)π)/(p+n))  =((p[sin (p−n)π−sin (p+n)π])/(p^2 −n^2 ))      +((n[sin (p−n)π+sin (p+n)π])/(p^2 −n^2 ))  =((−2psin nπcos pπ+2nsin pπcos nπ)/(p^2 −n^2 )) .

0π[cos(pn)xcos(p+n)x]dx=sin(pn)πpnsin(p+n)πp+n=p[sin(pn)πsin(p+n)π]p2n2+n[sin(pn)π+sin(p+n)π]p2n2=2psinnπcospπ+2nsinpπcosnπp2n2.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com