Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 26446 by yesaditya22@gmail.com last updated on 25/Dec/17

Answered by ajfour last updated on 25/Dec/17

cos θsin θ+sin θcos θ=a  ⇒ sin 2θ=a  ((d(sin θ))/(d(cos θ)))=((cos θ)/(−sin θ)) =−(√((1−y^2 )/(1−x^2 ))) .

cosθsinθ+sinθcosθ=asin2θ=ad(sinθ)d(cosθ)=cosθsinθ=1y21x2.

Commented by mrW1 last updated on 26/Dec/17

x=sin θ, (√(1−x^2 ))=cos θ  y=sin α, (√(1−y^2 ))=cos α  cos α sin θ+sin α cos θ=a  ⇒sin (θ+α)=a  ⇒θ+α=sin^(−1) a  ⇒α=sin^(−1) a−θ  ⇒(dα/dθ)=−1  (dy/dx)=(dy/dα)×(1/(dx/dθ))×(dα/dθ)=((cos α)/(cos θ))×(−1)=−((√(1−y^2 ))/(√(1−x^2 )))

x=sinθ,1x2=cosθy=sinα,1y2=cosαcosαsinθ+sinαcosθ=asin(θ+α)=aθ+α=sin1aα=sin1aθdαdθ=1dydx=dydα×1dxdθ×dαdθ=cosαcosθ×(1)=1y21x2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com