Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 27997 by ajfour last updated on 18/Jan/18

Commented by mrW2 last updated on 18/Jan/18

ω=(√((3g)/(2a cos α)))

ω=3g2acosα

Commented by ajfour last updated on 18/Jan/18

yes sir, please see my solution  when i post. Beforehand can i  have some working steps to this  answer..

yessir,pleaseseemysolutionwhenipost.Beforehandcanihavesomeworkingstepstothisanswer..

Commented by ajfour last updated on 18/Jan/18

What is the maximum value of  ω for which the plate can stay in  vertical plane ?

Whatisthemaximumvalueofωforwhichtheplatecanstayinverticalplane?

Answered by mrW2 last updated on 18/Jan/18

Commented by mrW2 last updated on 18/Jan/18

ρ=(M/(ab))  dm=ρdydx  dF=rω^2 dm  dF_⊥ =cos θ dF=ρω^2  r cos θ dydx  r^2 =(x sin α)^2 +y^2   r cos θ=x sin α  ⇒dF_⊥ =ρω^2  sin α x dydx  ((Mga sin α)/2)=∫x cos α dF_⊥ =ρω^2 sin α cos α ∫_0 ^( a) ∫_(−(b/2)) ^(b/2) x^2 dydx  ((Mga sin α)/2)=ρω^2 sin α cos α ((a^3 b)/3)  ((Mg)/2)=ρω^2 cos α ((a^2 b)/3)  (g/2)=ω^2 cos α (a/3)  ⇒ω=(√((3g)/(2a cos α)))    for α=0  ⇒ω_(max) =(√((3g)/(2a)))

ρ=Mabdm=ρdydxdF=rω2dmdF=cosθdF=ρω2rcosθdydxr2=(xsinα)2+y2rcosθ=xsinαdF=ρω2sinαxdydxMgasinα2=xcosαdF=ρω2sinαcosα0ab2b2x2dydxMgasinα2=ρω2sinαcosαa3b3Mg2=ρω2cosαa2b3g2=ω2cosαa3ω=3g2acosαforα=0ωmax=3g2a

Commented by ajfour last updated on 18/Jan/18

Thank you too much Sir. I enjoyed thoroughly following the solution Sir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com