Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 34116 by tanmay.chaudhury50@gmail.com last updated on 30/Apr/18

Commented by abdo mathsup 649 cc last updated on 02/May/18

let put f(x)= ((1−x^2 )/(x^2  −2xcosθ +1)) the poles of f are  x_1 = ((1−x^2 )/((x −e^(iθ) )(x−e^(−iθ) )))  =(1−x^2 )(  (1/(x −e^(iθ) )) −(1/(x −e^(−iθ) )))(1/(2isinθ))  =((1−x^2 )/(2isinθ))(−(1/(e^(iθ) −x))  +(1/(e^(−iθ) −x)))  =((1−x^2 )/(2isinθ))(    (e^(iθ) /(1−x e^(iθ) ))  −(e^(−iθ) /(1−x e^(−iθ) )))  = ((1−x^2 )/(2isinθ))( e^(iθ)  Σ_(n=0) ^∞  x^n  e^(inθ)  −e^(−iθ)  Σ_(n=0) ^∞  x^n  e^(−inθ) )  = ((1−x^2 )/(2i sinθ)) (  Σ_(n=0) ^∞   x^n  e^(i(n+1)θ)   −Σ_(n=0) ^∞  x^n  e^(−i(n+1)θ) )  =((1−x^2 )/(2isinθ)) (  Σ_(n=0) ^∞ x^n (2isin(n+1)θ))  =((1−x^2 )/(sinθ)) Σ_(n=0) ^∞  (sin(n+1)θ)x^n   = (1/(sinθ)) Σ_(n=0) ^∞  sin(n+1)θ .x^n  −(1/(sinθ)) Σ_(n=0) ^∞ sin(n+1)θ.x^(n+2)   =....

letputf(x)=1x2x22xcosθ+1thepolesoffarex1=1x2(xeiθ)(xeiθ)=(1x2)(1xeiθ1xeiθ)12isinθ=1x22isinθ(1eiθx+1eiθx)=1x22isinθ(eiθ1xeiθeiθ1xeiθ)=1x22isinθ(eiθn=0xneinθeiθn=0xneinθ)=1x22isinθ(n=0xnei(n+1)θn=0xnei(n+1)θ)=1x22isinθ(n=0xn(2isin(n+1)θ))=1x2sinθn=0(sin(n+1)θ)xn=1sinθn=0sin(n+1)θ.xn1sinθn=0sin(n+1)θ.xn+2=....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com