All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 35635 by ajfour last updated on 21/May/18
Commented by ajfour last updated on 21/May/18
Findthevolumecommontothetwospheres.
Answered by ajfour last updated on 21/May/18
Letcentreoflowerspherebeoriginandlinejoiningthecentres,thez−axis.eqn.oflowersphereisz2=R2−(x2+y2)eqn.ofuppersphereis(z−d)2=r2−(x2+y2)equatingthetwowegetzc2−(zc−d)2=R2−r2or(2zc−d)d=R2−r2...(i)RequiredvolumeVcisVc=∫d−rzcπ[r2−(d−z)2]dz+∫zcRπ(R2−z2)dz=π{[r2z+(d−z)33]d−rzc+(R2z−z33)zcR}=π[r2zc+(d−zc)33−r2(d−r)−r33]+π[R3−R33−R2zc+zc33]Vc=π[2(R3+r3)3−(R2−r2)zc−r2d+d33−d2zc+zc2d]...(ii)Using(i):Vc=π[2(R3+r3)3+d33−r2d−2zc2d+zc2d]Vc=π[2(R3+r3)3+d33−r2d−(d2+R2−r2)24d].
Ifd=R+rthenVc=0letscheck:Vc∣d=R+r=π[2(R3+r3)3+(R+r)33−r2(R+r)−[(R+r)2+R2−r2]24(R+r)]Vc=π[23(R3+r3)+(R+r)33−r2(R+r)−(R+r)34−(R+r)(R−r)24−(R+r)2(R−r)2]=π[(23+13−14−14−12)R3+(0+1−34−14+12)R2r+(0+1−1−34+14+12)r2R+(+23+13−1−14−14+12)r3]=0(indeed)∙
Terms of Service
Privacy Policy
Contact: info@tinkutara.com