Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 35635 by ajfour last updated on 21/May/18

Commented by ajfour last updated on 21/May/18

Find the volume common to the  two spheres.

Findthevolumecommontothetwospheres.

Answered by ajfour last updated on 21/May/18

Let centre of lower sphere be   origin and line joining the  centres, the z-axis.  eqn. of  lower sphere is          z^2 =R^2 −(x^2 +y^2 )   eqn. of upper sphere is         (z−d)^2 =r^2 −(x^2 +y^2 )  equating the two we get     z_c ^2 −(z_c −d)^2  = R^2 −r^2   or     (2z_c −d)d=R^2 −r^2     ...(i)  Required volume V_c  is     V_c =∫_(d−r) ^(  z_c ) π[r^2 −(d−z)^2 ]dz +                    ∫_z_c  ^(  R) π(R^2 −z^2 )dz    =π{[r^2 z+(((d−z)^3 )/3)]_(d−r) ^z_c  +(R^2 z−(z^3 /3))_z_c  ^R }   =π[r^2 z_c +(((d−z_c )^3 )/3)−r^2 (d−r)−(r^3 /3)]            +π[R^3 −(R^3 /3)−R^2 z_c +(z_c ^3 /3)]   V_c =π[((2(R^3 +r^3 ))/3)−(R^2 −r^2 )z_c −r^2 d                      +(d^3 /3)−d^2 z_c +z_c ^2 d ]    ...(ii)  Using (i) :  V_c = π[((2(R^3 +r^3 ))/3)+(d^3 /3)−r^2 d−2z_c ^2 d+z_c ^2 d]     V_c  =π[((2(R^3 +r^3 ))/3)+(d^3 /3)−r^2 d−(((d^2 +R^2 −r^2 )^2 )/(4d))] .

Letcentreoflowerspherebeoriginandlinejoiningthecentres,thezaxis.eqn.oflowersphereisz2=R2(x2+y2)eqn.ofuppersphereis(zd)2=r2(x2+y2)equatingthetwowegetzc2(zcd)2=R2r2or(2zcd)d=R2r2...(i)RequiredvolumeVcisVc=drzcπ[r2(dz)2]dz+zcRπ(R2z2)dz=π{[r2z+(dz)33]drzc+(R2zz33)zcR}=π[r2zc+(dzc)33r2(dr)r33]+π[R3R33R2zc+zc33]Vc=π[2(R3+r3)3(R2r2)zcr2d+d33d2zc+zc2d]...(ii)Using(i):Vc=π[2(R3+r3)3+d33r2d2zc2d+zc2d]Vc=π[2(R3+r3)3+d33r2d(d2+R2r2)24d].

Commented by ajfour last updated on 21/May/18

If d=R+r  then  V_c =0  lets check:  V_c ∣_(d=R+r) =π[((2(R^3 +r^3 ))/3)+(((R+r)^3 )/3)                      −r^2 (R+r)−(([(R+r)^2 +R^2 −r^2 ]^2 )/(4(R+r)))]  V_c  =π[(2/3)(R^3 +r^3 )+(((R+r)^3 )/3)     −r^2 (R+r)−(((R+r)^3 )/4)−(((R+r)(R−r)^2 )/4)           −(((R+r)^2 (R−r))/2) ]     =π[((2/3)+(1/3)−(1/4)−(1/4)−(1/2))R^3      +(0+1−(3/4)−(1/4)+(1/2))R^2 r     +(0+1−1−(3/4)+(1/4)+(1/2))r^2 R     +(+(2/3)+(1/3)−1−(1/4)−(1/4)+(1/2))r^3  ]  = 0  (indeed) •

Ifd=R+rthenVc=0letscheck:Vcd=R+r=π[2(R3+r3)3+(R+r)33r2(R+r)[(R+r)2+R2r2]24(R+r)]Vc=π[23(R3+r3)+(R+r)33r2(R+r)(R+r)34(R+r)(Rr)24(R+r)2(Rr)2]=π[(23+13141412)R3+(0+13414+12)R2r+(0+1134+14+12)r2R+(+23+1311414+12)r3]=0(indeed)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com