Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 38373 by tanmay.chaudhury50@gmail.com last updated on 24/Jun/18

Commented by tanmay.chaudhury50@gmail.com last updated on 25/Jun/18

I(a)=∫_0 ^∞ ((tan^(−1) (ax))/(x(1+x^2 )))dx  ((dI(a))/da)=∫_0 ^∞ (∂/∂a)((tan^(−1) ax)/(x(1+x^2 )))dx  =∫_0 ^∞ ((xdx)/(x(1+x^2 )(1+a^2 x^2 )))  =∫_0 ^∞ (a^2 /((a^2 +a^2 x^2 )(1+a^2 x^2 )))dx  =(a^2 /(a^2 −1))∫_0 ^∞ (((a^2 +a^2 x^2 )−(1+a^2 x^2 ))/((a^2 +a^2 x^2 )(1+a^2 x^2 )))dx  =(a^2 /(a^2 −1)){∫_0 ^∞ (dx/(1+a^2 x^2 ))−∫_0 ^∞ (dx/(a^2 +a^2 x^2 ))}  =(a^2 /(a^2 −1)){(1/a^2 )∫_0 ^∞ (dx/(((1/a^2 )+x^2 )))−(1/a^2 )∫_0 ^∞ (dx/(1+x^2 ))}  =(1/(a^2 −1))∣{atan^(−1) (ax)−tan^(−1) x}∣_0 ^∞   =(1/(a^2 −1)){atan^(−1) (∞)−tan^(−1) (∞)}  =(1/(a^2 −1)){a(Π/2)−(Π/2)}  (dI/da)=(Π/2)×((a−1)/((a+1)(a−1)))  dI=(Π/2)(da/((a+1)))  I=(Π/2)ln(a+1)+c  when a=0   I=0  so  c=0  I=(Π/2)ln(a+1)

I(a)=0tan1(ax)x(1+x2)dxdI(a)da=0atan1axx(1+x2)dx=0xdxx(1+x2)(1+a2x2)=0a2(a2+a2x2)(1+a2x2)dx=a2a210(a2+a2x2)(1+a2x2)(a2+a2x2)(1+a2x2)dx=a2a21{0dx1+a2x20dxa2+a2x2}=a2a21{1a20dx(1a2+x2)1a20dx1+x2}=1a21{atan1(ax)tan1x}0=1a21{atan1()tan1()}=1a21{aΠ2Π2}dIda=Π2×a1(a+1)(a1)dI=Π2da(a+1)I=Π2ln(a+1)+cwhena=0I=0soc=0I=Π2ln(a+1)

Commented by math khazana by abdo last updated on 25/Jun/18

you answer is not correct sir Tanmay...thre is  something wrong...

youanswerisnotcorrectsirTanmay...threissomethingwrong...

Commented by tanmay.chaudhury50@gmail.com last updated on 25/Jun/18

no i have checked it...and it is right...

noihavecheckedit...anditisright...

Commented by tanmay.chaudhury50@gmail.com last updated on 25/Jun/18

Commented by tanmay.chaudhury50@gmail.com last updated on 25/Jun/18

Commented by tanmay.chaudhury50@gmail.com last updated on 25/Jun/18

Commented by prof Abdo imad last updated on 25/Jun/18

5) let f(a)= ∫_0 ^∞    ((arctan(ax))/(x(1+x^2 ))) dx we have  f^′ (a) =  ∫_0 ^∞       (x/(x(1+x^2 )(1+a^2 x^2 )))dx  =∫_0 ^∞      (dx/((1+x^2 )(1+a^2 x^2 ))) let decompose  F(x)=  (1/((1+x^2 )(1+a^2 x^2 )))  F(x)= ((αx+b)/(1+x^2 ))  +((cx+d)/(1+a^2 x^2 ))  F(−x)=F(x) ⇒((−αx +b)/(1+x^2 )) +((−cx +d)/(1+a^2 x^2 )) =F(x)⇒  α=c=0 ⇒F(x)= (b/(1+x^2 )) +(d/(1+a^2 x^2 ))  lim_(x→+∞) x^2  F(x)=b +(d/a^2 ) =0 ⇒d +a^2 b=0 ⇒  d=−a^2 b ⇒F(x)=(b/(1+x^2 )) −a^2   (b/(1+a^2 x^2 ))  F(0)=1 =b −a^2 b =(1−a^2 )b ⇒b= (1/(1−a^2 ))  (we suppose that a^2  ≠1) ⇒  F(x)= (1/(1−a^2 )){  (1/(1+x^2 )) −(a^2 /(1+a^2 x^2 ))} ⇒  f^′ (a) = (1/(1−a^2 )) ∫_0 ^∞    (dx/(1+x^2 ))  −(a^2 /(1−a^2 )) ∫_0 ^∞    (dx/(1+a^2 x^2 ))  changement ax=t give( a>0)  ∫_0 ^∞   (dx/(1+a^2 x^2 )) = ∫_0 ^∞    (1/(1+t^2 )) (dt/a) = (π/(2a)) ⇒  f^′ (a) = (π/(2(1−a^2 ))) −(a^2 /(1−a^2 )) (π/(2a))  = (π/(2(1−a^2 ))){ 1 −a} = (π/(2(1+a))) ⇒  f(a) =(π/2) ∫    (da/(1+a)) +c= (π/2)ln(1+a) +c  c=f(0)=0 ⇒ f(a)=(π/2)ln(1+a)  if a<0 and a≠−1  changegent ax=−t give  ∫_0 ^∞     (1/(1+t^2 )) ((−dt)/a) =−(π/(2a)) ⇒  f^′ (a)= (π/(2(1−a^2 ))) −(a^2 /(1−a^2 ))(−(π/(2a)))  = (π/(2(1−a^2 ))){ 1+a} = (π/(2(1−a))) ⇒  f(a) = (π/2) ∫   (da/(1−a)) =−(π/2)ln∣1−a∣ +c but c=f(0)=0  ⇒f(a) =−(π/2)ln(1−a).

5)letf(a)=0arctan(ax)x(1+x2)dxwehavef(a)=0xx(1+x2)(1+a2x2)dx=0dx(1+x2)(1+a2x2)letdecomposeF(x)=1(1+x2)(1+a2x2)F(x)=αx+b1+x2+cx+d1+a2x2F(x)=F(x)αx+b1+x2+cx+d1+a2x2=F(x)α=c=0F(x)=b1+x2+d1+a2x2limx+x2F(x)=b+da2=0d+a2b=0d=a2bF(x)=b1+x2a2b1+a2x2F(0)=1=ba2b=(1a2)bb=11a2(wesupposethata21)F(x)=11a2{11+x2a21+a2x2}f(a)=11a20dx1+x2a21a20dx1+a2x2changementax=tgive(a>0)0dx1+a2x2=011+t2dta=π2af(a)=π2(1a2)a21a2π2a=π2(1a2){1a}=π2(1+a)f(a)=π2da1+a+c=π2ln(1+a)+cc=f(0)=0f(a)=π2ln(1+a)ifa<0anda1changegentax=tgive011+t2dta=π2af(a)=π2(1a2)a21a2(π2a)=π2(1a2){1+a}=π2(1a)f(a)=π2da1a=π2ln1a+cbutc=f(0)=0f(a)=π2ln(1a).

Answered by tanmay.chaudhury50@gmail.com last updated on 25/Jun/18

Terms of Service

Privacy Policy

Contact: info@tinkutara.com