Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 40277 by Raj Singh last updated on 18/Jul/18

Answered by MJS last updated on 18/Jul/18

(d/dθ)[sin^p  θ cos^q  θ]=sin^(p−1)  θ cos^(q−1)  θ (pcos^2  θ −qsin^2  θ)  zeros at  sin θ =0 ⇒ θ=2nπ  cos θ =0 ⇒ θ=(2n+1)(π/2)    pcos^2  θ −qsin^2  θ =0  pc^2 −qs^2 =0  p(1−s^2 )−qs^2 =0  p−ps^2 −qs^2 =0  sin^2  θ =(p/(p+q))  ⇒ cos^2  θ =1−(p/(p+q))=(q/(p+q))  ⇒ tan^2  θ =(p/q)  ⇒ θ=arctan (√(p/q))

ddθ[sinpθcosqθ]=sinp1θcosq1θ(pcos2θqsin2θ)zerosatsinθ=0θ=2nπcosθ=0θ=(2n+1)π2pcos2θqsin2θ=0pc2qs2=0p(1s2)qs2=0pps2qs2=0sin2θ=pp+qcos2θ=1pp+q=qp+qtan2θ=pqθ=arctanpq

Answered by tanmay.chaudhury50@gmail.com last updated on 18/Jul/18

y=sin^p θcos^q θ  lny=plnsinθ+qlncosθ  (1/y)(dy/dθ)=pcotθ−qtanθ  for max/min (dy/dθ)=0  pcotθ−qtanθ=0  qtanθ=pcotθ  tan^2 θ=(p/q)    so tanθ=(√(p/q))  (dy/dθ)=sin^p θcos^q θ(pcotθ−qtanθ)  (dy/dθ)=y(pcotθ−qtanθ)  (d^2 y/dθ^2 )=(dy/dθ)(pcotθ−qtanθ)+y(−pcosec^2 θ−qsec^2 θ)  (d^2 y/dθ^2 )=(dy/dθ)(p.(√(q/p)) −q.(√(p/q)) )−y{p(1+(q/p))+q(1+(p/q)  (d^2 y/dθ^2 )=0−2y(p+q) =−2y(p+q)  at tanθ=(√(p/q))    (d^2 y/dθ^2 ) is −ve  so at tanθ=(√(p/q))  sin^p θcos^q θ  is maximum

y=sinpθcosqθlny=plnsinθ+qlncosθ1ydydθ=pcotθqtanθformax/mindydθ=0pcotθqtanθ=0qtanθ=pcotθtan2θ=pqsotanθ=pqdydθ=sinpθcosqθ(pcotθqtanθ)dydθ=y(pcotθqtanθ)d2ydθ2=dydθ(pcotθqtanθ)+y(pcosec2θqsec2θ)d2ydθ2=dydθ(p.qpq.pq)y{p(1+qp)+q(1+pqd2ydθ2=02y(p+q)=2y(p+q)attanθ=pqd2ydθ2isvesoattanθ=pqsinpθcosqθismaximum

Terms of Service

Privacy Policy

Contact: info@tinkutara.com